![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan's famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci's proof of the Poincare-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo's theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant's structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his "Clifford algebra analogue" of the Hopf-Koszul-Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. "
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.
What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.
This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.
This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure-the Schrodinger-Virasoro algebra. Just as Poincare invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrodinger operators."
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.
The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, ****** The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, *** ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking.
This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.
From the reviews: ..". [Gabriel and Roiter] are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." --The Mathematical Gazette
These books grew out of the perception that a number of important
conceptual and theoretical advances in research on small group
behavior had developed in recent years, but were scattered in
rather fragmentary fashion across a diverse literature. Thus, it
seemed useful to encourage the formulation of summary accounts. A
conference was held in Hamburg with the aim of not only encouraging
such developments, but also encouraging the integration of
theoretical approaches where possible. These two volumes are the
result.
Algebra I For Dummies, 2nd Edition (9781119293576) was previously published as Algebra I For Dummies, 2nd Edition (9780470559642). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Factor fearlessly, conquer the quadratic formula, and solve linear equations There's no doubt that algebra can be easy to some while extremely challenging to others. If you're vexed by variables, Algebra I For Dummies, 2nd Edition provides the plain-English, easy-to-follow guidance you need to get the right solution every time! Now with 25% new and revised content, this easy-to-understand reference not only explains algebra in terms you can understand, but it also gives you the necessary tools to solve complex problems with confidence. You'll understand how to factor fearlessly, conquer the quadratic formula, and solve linear equations. Includes revised and updated examples and practice problems Provides explanations and practical examples that mirror today's teaching methods Other titles by Sterling: Algebra II For Dummies and Algebra Workbook For Dummies Whether you're currently enrolled in a high school or college algebra course or are just looking to brush-up your skills, Algebra I For Dummies, 2nd Edition gives you friendly and comprehensible guidance on this often difficult-to-grasp subject.
Coding theory came into existence in the late 1940's and is
concerned with devising efficient encoding and decoding
procedures.
This book brings together the impact of Prof. John Horton Conway, the playful and legendary mathematician's wide range of contributions in science which includes research areas-Game of Life in cellular automata, theory of finite groups, knot theory, number theory, combinatorial game theory, and coding theory. It contains transcripts where some eminent scientists have shared their first-hand experience of interacting with Conway, as well as some invited research articles from the experts focusing on Game of Life, cellular automata, and the diverse research directions that started with Conway's Game of Life. The book paints a portrait of Conway's research life and philosophical direction in mathematics and is of interest to whoever wants to explore his contribution to the history and philosophy of mathematics and computer science. It is designed as a small tribute to Prof. Conway whom we lost on April 11, 2020.
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p-1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
In the fall of 1992 I was invited by Professor Changho Keem to visit Seoul National University and give a series of talks. I was asked to write a monograph based on my talks, and the result was published by the Global Analysis Research Center of that University in 1994. The monograph treated deficiency modules and liaison theory for complete intersections. Over the next several years I continually thought of improvements and additions that I would like to make to the manuscript, and at the same time my research led me in directions that gave me a fresh perspective on much of the material, especially in the direction of liaison theory. This re sulted in a dramatic change in the focus of this manuscript, from complete intersections to Gorenstein ideals, and a substantial amount of additions and revisions. It is my hope that this book now serves not only as an introduction to a beautiful subject, but also gives the reader a glimpse at very recent developments and an idea of the direction in which liaison theory is going, at least from my perspective. One theme which I have tried to stress is the tremendous amount of geometry which lies at the heart of the subject, and the beautiful interplay between algebra and geometry. Whenever possible I have given remarks and examples to illustrate this interplay, and I have tried to phrase the results in as geometric a way as possible."
This edition has been revised and expanded, particularly the material on rings and fields, to provide a comprehensive first course in abstract algebra. The text is written for the student encountering this subject for the first time - the treatment is clear and patient, but also provides enough depth to demonstrate the insights that abstract algebra offers. The book includes many worked examples and each chapter contains a set of graded exercises, with partial solutions.
Richly illustrated in attractive full-colour and contains pedagogical features such as essay questions, summary and key points, and further reading suggestions is supported by a fully updated companion website, featuring student resources including lecture recordings, multiple choice questions and useful web links, as well as PowerPoint slides for lecturers. The only dedicated textbook on social neuroscience providing a much needed resource for lecturers and students. Suitable for both undergraduate and postgraduate students in psychology and neuroscience from 2nd year to masters level. Relevant courses include social neuroscience, social cognitive neuroscience, the social mind, social cognition, human neuroscience, developmental social neuroscience, etc. The third edition will be updated to reflect the growing volume of evidence and theories in the field and will include additional content on the applications of social neuroscience, social influence, reproducibility issues, and computational approaches. The companion website will include a new test bank.
This work presents invited contributions from the second "International Conference on Mathematics and Statistics" jointly organized by the AUS (American University of Sharjah) and the AMS (American Mathematical Society). Addressing several research fields across the mathematical sciences, all of the papers were prepared by faculty members at universities in the Gulf region or prominent international researchers. The current volume is the first of its kind in the UAE and is intended to set new standards of excellence for collaboration and scholarship in the region.
The book consists of articles based on the XXXVIII Bialowieza Workshop on Geometric Methods in Physics, 2019. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past eight years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities. The chapter "Toeplitz Extensions in Noncommutative Topology and Mathematical Physics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The three volumes of Interest Rate Modeling present a comprehensive and up-to-date treatment of techniques and models used in the pricing and risk management of fixed income securities. Written by two leading practitioners and seasoned industry veterans, this unique series combines finance theory, numerical methods, and approximation techniques to provide the reader with an integrated approach to the process of designing and implementing industrial-strength models for fixed income security valuation and hedging. Aiming to bridge the gap between advanced theoretical models and real-life trading applications, the pragmatic, yet rigorous, approach taken in this book will appeal to students, academics, and professionals working in quantitative finance. The first half of Volume III contains a detailed study of several classes of fixed income securities, ranging from simple vanilla options to highly exotic cancelable and path-dependent derivatives. The analysis is done in product-specific fashion covering, among other subjects, risk characterization, calibration strategies, and valuation methods. In its second half, Volume III studies the general topic of derivative portfolio risk management, with a particular emphasis on the challenging problem of computing smooth price sensitivities to market input perturbations.
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields. |
![]() ![]() You may like...
Ophthalmic Product Development - From…
Seshadri Neervannan, Uday B. Kompella
Hardcover
R2,400
Discovery Miles 24 000
Pharmaco-complexity - Non-Linear…
Anthony J. Hickey, Hugh D.C. Smyth
Hardcover
R1,521
Discovery Miles 15 210
|