![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
This unique textbook focuses on the structure of fields and is intended for a second course in abstract algebra. Besides providing proofs of the transcendence of pi and e, the book includes material on differential Galois groups and a proof of Hilbert's irreducibility theorem. The reader will hear about equations, both polynomial and differential, and about the algebraic structure of their solutions. In explaining these concepts, the author also provides comments on their historical development and leads the reader along many interesting paths. In addition, there are theorems from analysis: as stated before, the transcendence of the numbers pi and e, the fact that the complex numbers form an algebraically closed field, and also Puiseux's theorem that shows how one can parametrize the roots of polynomial equations, the coefficients of which are allowed to vary. There are exercises at the end of each chapter, varying in degree from easy to difficult. To make the book more lively, the author has incorporated pictures from the history of mathematics, including scans of mathematical stamps and pictures of mathematicians. Antoine Chambert-Loir taught this book when he was Professor at A0/00cole Polytechnique, Palaiseau, France. He is now Professor at UniversitA(c) de Rennes 1.
"The second volume of the authors' 'Computational commutative algebra'...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH
This monograph presents both classical and recent results in the theory of nilpotent groups and provides a self-contained, comprehensive reference on the topic. While the theorems and proofs included can be found throughout the existing literature, this is the first book to collect them in a single volume. Details omitted from the original sources, along with additional computations and explanations, have been added to foster a stronger understanding of the theory of nilpotent groups and the techniques commonly used to study them. Topics discussed include collection processes, normal forms and embeddings, isolators, extraction of roots, P-localization, dimension subgroups and Lie algebras, decision problems, and nilpotent groups of automorphisms. Requiring only a strong undergraduate or beginning graduate background in algebra, graduate students and researchers in mathematics will find The Theory of Nilpotent Groups to be a valuable resource.
The chapters in this contributed volume explore new results and existing problems in algebra, analysis, and related topics. This broad coverage will help generate new ideas to solve various challenges that face researchers in pure mathematics. Specific topics covered include maximal rotational hypersurfaces, k-Horadam sequences, quantum dynamical semigroups, and more. Additionally, several applications of algebraic number theory and analysis are presented. Algebra, Analysis, and Associated Topics will appeal to researchers, graduate students, and engineers interested in learning more about the impact pure mathematics has on various fields.
Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:A· a general introduction to automatic sequencesA· the basic (combinatorial) properties of automatic sequencesA· the algebraic approach to automatic sequencesA· geometric objects related to automatic sequences.
The aim of this book is the classification of symplectic amalgams - structures which are intimately related to the finite simple groups. In all there sixteen infinite families of symplectic amalgams together with 62 more exotic examples. The classification touches on many important aspects of modern group theory: * p-local analysis * the amalgam method * representation theory over finite fields; and * properties of the finite simple groups. The account is for the most part self-contained and the wealth of detail makes this book an excellent introduction to these recent developments for graduate students, as well as a valuable resource and reference for specialists in the area.
For courses in Introductory Algebra. Active learning for active minds The authors of the Mathematics in Action series believe that students learn mathematics best by actually doing the math within a realistic context. If a student is taking this course, why teach them the same content in the same way that they've already seen-yet did not retain? Following this principle, the authors provide a series of guided-discovery activities that help students to construct, reflect upon, and apply mathematical concepts, deepening their conceptual understanding as they do so. The active style of learning develops critical-thinking skills and mathematical literacy, while keeping the concepts in the context of real applications. The 6th Edition includes updated examples and activities for maximum interest and relevance, along with new and enhanced digital resources in MyLab (TM) Math to support conceptual understanding for students, wherever and whenever they need it. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135281555 / 9780135281550 Mathematics in Action: An Introduction to Algebraic, Graphical, and Numerical Problem Solving Plus MyLab Math with Pearson eText - Access Card Package Package consists of: 0135115620 / 9780135115626 Mathematics in Action: An Introduction to Algebraic, Graphical, and Numerical Problem Solving 013516818X / 9780135168189 MyLab Math with Pearson eText - Standalone Access Card - for Mathematics in Action: An Introduction to Algebraic, Graphical, and Numerical Problem Solving
The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.
For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. Now in the sixth decade of his career, he continues to produce results of astonishing beauty and significance for which he is invited to lecture all over the world. This is the fourth volume (1985-1995) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this fourth volume is Kostant's commentaries and summaries of his papers in his own words.
Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields. The history of this equation is long and circuitous, and involved a number of different approaches before a definitive theory was found. There were partial patterns and quite effective methods of finding solutions, but a complete theory did not emerge until the end of the eighteenth century. The topic is motivated and developed through sections of exercises which allow the student to recreate known theory and provide a focus for their algebraic practice. There are also several explorations that encourage the reader to embark on their own research. Some of these are numerical and often require the use of a calculator or computer. Others introduce relevant theory that can be followed up on elsewhere, or suggest problems that the reader may wish to pursue. A high school background in mathematics is all that is needed to get into this book, and teachers and others interested in mathematics who do not have a background in advanced mathematics may find that it is a suitable vehicle for keeping up an independent interest in the subject. Edward Barbeau is Professor of Mathematics at the University of Toronto. He has published a number of books directed to students of mathematics and their teachers, including Polynomials (Springer 1989), Power Play (MAA 1997), Fallacies, Flaws and Flimflam (MAA 1999) and After Math (Wall & Emerson, Toronto 1995).
For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. Now in the sixth decade of his career, he continues to produce results of astonishing beauty and significance for which he is invited to lecture all over the world. This is the fifth volume (1995-2005) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this fifth volume is Kostant's commentaries and summaries of his papers in his own words.
First published in German in 1970 and translated into Russian in 1973, this classic now becomes available in English. After introducing the theory of pro-p groups and their cohomology, it discusses presentations of the Galois groups G S of maximal p-extensions of number fields that are unramified outside a given set S of primes. It computes generators and relations as well as the cohomological dimension of some G S, and gives applications to infinite class field towers.The book demonstrates that the cohomology of groups is very useful for studying Galois theory of number fields; at the same time, it offers a down to earth introduction to the cohomological method. In a "Postscript" Helmut Koch and Franz Lemmermeyer give a survey on the development of the field in the last 30 years. Also, a list of additional, recent references has been included.
This unique monograph building bridges among a number of different areas of mathematics such as algebra, topology, and category theory. The author uses various tools to develop new applications of classical concepts. Detailed proofs are given for all major theorems, about half of which are completely new. Sheaves of Algebras over Boolean Spaces will take readers on a journey through sheaf theory, an important part of universal algebra. This excellent reference text is suitable for graduate students, researchers, and those who wish to learn about sheaves of algebras.
Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Grobner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family.In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels. This book is intended for statisticians with minimal backgrounds in algebra.As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field."
This book takes a deep dive into several key linear algebra subjects as they apply to data analytics and data mining. The book offers a case study approach where each case will be grounded in a real-world application. This text is meant to be used for a second course in applications of Linear Algebra to Data Analytics, with a supplemental chapter on Decision Trees and their applications in regression analysis. The text can be considered in two different but overlapping general data analytics categories, clustering and interpolation. Knowledge of mathematical techniques related to data analytics, and exposure to interpretation of results within a data analytics context, are particularly valuable for students studying undergraduate mathematics. Each chapter of this text takes the reader through several relevant and case studies using real world data. All data sets, as well as Python and R syntax are provided to the reader through links to Github documentation. Following each chapter is a short exercise set in which students are encouraged to use technology to apply their expanding knowledge of linear algebra as it is applied to data analytics. A basic knowledge of the concepts in a first Linear Algebra course are assumed; however, an overview of key concepts are presented in the Introduction and as needed throughout the text.
An instant New York Times Bestseller! "Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning." -The New York Times From the New York Times-bestselling author of How Not to Be Wrong-himself a world-class geometer-a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world-it explains it. Shape shows us how.
This book originated from a Discussion Group (Teaching Linear Algebra) that was held at the 13th International Conference on Mathematics Education (ICME-13). The aim was to consider and highlight current efforts regarding research and instruction on teaching and learning linear algebra from around the world, and to spark new collaborations. As the outcome of the two-day discussion at ICME-13, this book focuses on the pedagogy of linear algebra with a particular emphasis on tasks that are productive for learning. The main themes addressed include: theoretical perspectives on the teaching and learning of linear algebra; empirical analyses related to learning particular content in linear algebra; the use of technology and dynamic geometry software; and pedagogical discussions of challenging linear algebra tasks. Drawing on the expertise of mathematics education researchers and research mathematicians with experience in teaching linear algebra, this book gathers work from nine countries: Austria, Germany, Israel, Ireland, Mexico, Slovenia, Turkey, the USA and Zimbabwe.
This volume contains the accounts of the principal survey papers presented at GRAPHS and ORDER, held at Banff, Canada from May 18 to May 31, 1984. This conference was supported by grants from the N.A.T.O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the University of Calgary. We are grateful for all of this considerable support. Almost fifty years ago the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. On that occasion the principal lectures were delivered by G. Birkhoff, O. Ore and M.H. Stone. In those days the theory of ordered sets was thought to be a vigorous relative of group theory. Some twenty-five years ago the Symposium on Partially Ordered Sets and Lattice Theory was held in Monterey, U.S.A. Among the principal speakers at that meeting were R.P. Dilworth, B. Jonsson, A. Tarski and G. Birkhoff. Lattice theory had turned inward: it was concerned primarily with problems about lattices themselves. As a matter of fact the problems that were then posed have, by now, in many instances, been completely solved.
The purpose of this book is to explain linear algebra clearly for beginners. In doing so, the author states and explains somewhat advanced topics such as Hermitian products and Jordan normal forms. Starting from the definition of matrices, it is made clear with examples that matrices and matrix operation are abstractions of tables and operations of tables. The author also maintains that systems of linear equations are the starting point of linear algebra, and linear algebra and linear equations are closely connected. The solutions to systems of linear equations are found by solving matrix equations in the row-reduction of matrices, equivalent to the Gauss elimination method of solving systems of linear equations. The row-reductions play important roles in calculation in this book. To calculate row-reductions of matrices, the matrices are arranged vertically, which is seldom seen but is convenient for calculation. Regular matrices and determinants of matrices are defined and explained. Furthermore, the resultants of polynomials are discussed as an application of determinants. Next, abstract vector spaces over a field K are defined. In the book, however, mainly vector spaces are considered over the real number field and the complex number field, in case readers are not familiar with abstract fields. Linear mappings and linear transformations of vector spaces and representation matrices of linear mappings are defined, and the characteristic polynomials and minimal polynomials are explained. The diagonalizations of linear transformations and square matrices are discussed, and inner products are defined on vector spaces over the real number field. Real symmetric matrices are considered as well, with discussion of quadratic forms. Next, there are definitions of Hermitian inner products. Hermitian transformations, unitary transformations, normal transformations and the spectral resolution of normal transformations and matrices are explained. The book ends with Jordan normal forms. It is shown that any transformations of vector spaces over the complex number field have matrices of Jordan normal forms as representation matrices.
In these volumes, the most significant of the collected papers of the Chinese-American theoretical physicist Tsung-Dao Lee are printed. A complete list of his published papers, in order of publication, appears in the Bibliography of T.D. Lee. The papers have been arranged into ten categories, in most cases according to the subject matter. At the beginning of each of the first eight categories of papers, there is a commentary on the content and significance of all of the papers in the category. The two short final categories do not have any commentaries. The editor would like to thank Dr. Richard Friedberg for his assistance in the early stages of the editorial work on this project, as well as for writing commentaries on the papers of Categories III and IV. I would also like to thank Dr. Norman Christ for writing the commentary on the papers of Category VII. The assistance of Irene Tramm was in valuable in many aspects of preparing this collection, including locating copies of Lee's p pers. GERALD FEINBERG List of Categories of T.D. Lee's Papers Volume 1 I. Weak Interactions II. Early Papers on Astrophysics and Hydrodynamics III. Statistical Mechanics IV. Polarons and Solitons Volume 2 V. Quantum Field Theory VI. Symmetry Principles Volume 3 VII. Discrete Physics VIII. Strong Interaction Models IX. Historical Papers X. Gravity (Continuum Theory) Contents (Volume 3)* Introduction (by G. Feinberg) ............................................................ ix Bibliography of T.D. Lee ................................................................. xiii VII. Discrete Physics Commentary ................................................................ ."
"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.
This book provides an exposition of the algebraic aspects of the theory of lattice-ordered rings and lattice-ordered modules. All of the background material on rings, modules, and lattice-ordered groups necessary to make the work self-contained and accessible to a variety of readers is included. Filling a gap in the literature, Lattice-Ordered Rings and Modules may be used as a textbook or for self-study by graduate students and researchers studying lattice-ordered rings and lattice-ordered modules. Steinberg presents the material through 800+ extensive examples of varying levels of difficulty along with numerous exercises at the end of each section. Key topics include: lattice-ordered groups, rings, and fields; archimedean $l$-groups; f-rings and larger varieties of $l$-rings; the category of f-modules; various commutativity results.
Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles. Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borela "Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borela "Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques. Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harisha "Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization areintroduced. Concrete examples and relevant exercises engage the reader. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups and symmetric spaces is required of the reader.
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group |
![]() ![]() You may like...
|