![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book. The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas. The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
The main theme of this book is the theory of heights as they appear in various guises. This includes a large body of results on Mahlers measure of the height of a polynomial. The authors'approach is very down to earth as they cover the rationals, assuming no prior knowledge of elliptic curves. The chapters include examples and particular computations, with all special calculation included so as to be self-contained. The authors devote space to discussing Mahlers measure and to giving some convincing and original examples to explain this phenomenon. XXXXXXX NEUER TEXT The main theme of this book is the theory of heights as it appears in various guises. To this End.txt.Int.:, it examines the results of Mahlers measure of the height of a polynomial, which have never before appeared in book form. The authors take a down-to-earth approach that includes convincing and original examples. The book uncovers new and interesting connections between number theory and dynamics and will be interesting to researchers in both number theory and nonlinear dynamics."
This book discusses major theories and applications of fuzzy soft multisets and their generalization which help researchers get all the related information at one place. The primary objective of this book is to help bridge the gap to provide a textbook on the theories in fuzzy soft multisets and their applications in real life. It is targeted to researchers and students working in the field of fuzzy set theory, multiset theory, soft set theory and their applications. Uncertainty, vagueness and the representation of imperfect knowledge have been a problem in many fields of research, including artificial intelligence, network and communication, signal processing, machine learning, computer science, information technology, as well as medical science, economics, environments and engineering. There are many mathematical tools for dealing with uncertainties. They include fuzzy set theory, multiset theory, soft set theory and soft multiset theory.
A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.
In his studies of cyclotomic fields, in view of establishing his monumental theorem about Fermat's last theorem, Kummer introduced "local" methods. They are concerned with divisibility of "ideal numbers" of cyclotomic fields by lambda = 1 - psi where psi is a primitive "p"-th root of 1 (p any odd prime). Henssel developed Kummer's ideas, constructed the field of "p"-adic numbers and proved the fundamental theorem known today. Kurschak formally introduced the concept of a valuation of a field, as being real valued functions on the set of non-zero elements of the field satisfying certain properties, like the "p"-adic valuations. Ostrowski, Hasse, Schmidt and others developed this theory and collectively, these topics form the primary focus of this book.
Some mathematical disciplines can be presented and developed in the context of other disciplines, for instance Boolean algebras, that Stone has converted in a branch of ring theory, projective geome- tries, characterized by Birkhoff as lattices of a special type, projec- tive, descriptive and spherical geometries, represented by Prenowitz, as multigroups, linear geometries and convex sets presented by Jan- tosciak and Prenowitz as join spaces. As Prenowitz and Jantosciak did for geometries, in this book we present and study several ma- thematical disciplines that use the Hyperstructure Theory. Since the beginning, the Hyperstructure Theory and particu- larly the Hypergroup Theory, had applications to several domains. Marty, who introduced hypergroups in 1934, applied them to groups, algebraic functions and rational fractions. New applications to groups were also found among others by Eaton, Ore, Krasner, Utumi, Drbohlav, Harrison, Roth, Mockor, Sureau and Haddad. Connections with other subjects of classical pure Mathematics have been determined and studied: * Fields by Krasner, Stratigopoulos and Massouros Ch. * Lattices by Mittas, Comer, Konstantinidou, Serafimidis, Leoreanu and Calugareanu * Rings by Nakano, Kemprasit, Yuwaree * Quasigroups and Groupoids by Koskas, Corsini, Kepka, Drbohlav, Nemec * Semigroups by Kepka, Drbohlav, Nemec, Yuwaree, Kempra- sit, Punkla, Leoreanu * Ordered Structures by Prenowitz, Corsini, Chvalina IX x * Combinatorics by Comer, Tallini, Migliorato, De Salvo, Scafati, Gionfriddo, Scorzoni * Vector Spaces by Mittas * Topology by Mittas , Konstantinidou * Ternary Algebras by Bandelt and Hedlikova.
The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.
This book collects important results concerning the classification and properties of nilpotent orbits in a Lie algebra. It develops the Dynkin-Kostant and Bala-Carter classifications of complex nilpotent orbits and derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits.
This modern translation of Sophus Lie's and Friedrich Engel's "Theorie der Transformationsgruppen I" will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.
This book covers the material of an introductory course in linear algebra: sets and maps, vector spaces, bases, linear maps, matrices, determinants, systems of linear equations, Euclidean spaces, eigenvalues and eigenvectors, diagonalization of self-adjoint operators, and classification of matrices. The book is written for beginners. Its didactic features (the "book within a book" and multiple choice tests with commented answers) make it especially suitable for self-study.
The aim of the present work is two-fold. Firstly it aims at a
giving an account of many existing algorithms for calculating with
finite-dimensional Lie algebras. Secondly, the book provides an
introduction into the theory of finite-dimensional Lie algebras.
These two subject areas are intimately related. First of all, the
algorithmic perspective often invites a different approach to the
theoretical material than the one taken in various other monographs
(e.g., 42], 48], 77], 86]). Indeed, on various occasions the
knowledge of certain algorithms allows us to obtain a
straightforward proof of theoretical results (we mention the proof
of the Poincare-Birkhoff-Witt theorem and the proof of Iwasawa's
theorem as examples). Also proofs that contain algorithmic
constructions are explicitly formulated as algorithms (an example
is the isomorphism theorem for semisimple Lie algebras that
constructs an isomorphism in case it exists). Secondly, the
algorithms can be used to arrive at a better understanding of the
theory. Performing the algorithms in concrete examples, calculating
with the concepts involved, really brings the theory of life.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The classical circle method of Hardy and Littlewood is one of the most effective methods of additive number theory. Two examples are its success with Waring's problem and Goldbach's conjecture. In this book, Wang offers instances of generalizations of important results on diophantine equations and inequalities over rational fields to algebraic number fields. The book also contains an account of Siegel's generalized circle method and its applications to Waring's problem and additive equations and an account of Schmidt's method on diophantine equations and inequalities in several variables in algebraic number fields.
A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis.This book serves also as a comprehensive presentation of the theory and application of mixed matrices, developed primarily by the present author in the last decade. A mixed matrix is a convenient mathematical tool for systems analysis, compatible with the physical observation that "fixed constants" and "system parameters" are to be distinguished in the description of engineering systems.This book will be extremely useful to graduate students and researchers in engineering, mathematics and computer science.
First Published in 1991. Routledge is an imprint of Taylor & Francis, an informa company.
Proceedings of the Second International Conference on Trends in Semigroup Theory and Evolution Equations held Sept. 1989, Delft University of Technology, the Netherlands. Papers deal with recent developments in semigroup theory (e.g., positive, dual, integrated), and nonlinear evolution equations (e
This popular textbook was thoughtfully and specifically tailored to introducing undergraduate students to linear algebra. The second edition has been carefully revised to improve upon its already successful format and approach. In particular, the author added a chapter on quadratic forms, making this one of the most comprehensive introductory texts on linear algebra.
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.
The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data. The second edition surveys the last achievements in the field of wetting of real surfaces, including new chapters devoted to the wetting of lubricated and gradient surfaces and reactive wetting, which have seen the rapid progress in the last decade. Additional reading, surveying the progress across the entire field of wetting of real surfaces, is suggested to the reader. Contents What is surface tension? Wetting of ideal surfaces Contact angle hysteresis Dynamics of wetting Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie Models Superhydrophobicity, superhydrophilicity, and the rose petal effect Wetting transitions on rough surfaces Electrowetting and wetting in the presence of external fields Nonstick droplets Wetting of lubricated surfaces
For years I have heard about buildings and their applications to group theory. I finally decided to try to learn something about the subject by teaching a graduate course on it at Cornell University in Spring 1987. This book is based on the not es from that course. The course started from scratch and proceeded at a leisurely pace. The book therefore does not get very far. Indeed, the definition of the term "building" doesn't even appear until Chapter IV. My hope, however, is that the book gets far enough to enable the reader to tadle the literat ure on buildings, some of which can seem very forbidding. Most of the results in this book are due to J. Tits, who originated the the ory of buildings. The main exceptions are Chapter I (which presents some classical material), Chapter VI (which prcsents joint work of F. Bruhat and Tits), and Chapter VII (which surveys some applications, due to var ious people). It has been a pleasure studying Tits's work; I only hope my exposition does it justice."
The modern theory of algebras of binary relations, reformulated by
Tarski as an abstract, algebraic, equational theory of relation
algebras, has considerable mathematical significance, with
applications in various fields: e.g., in computer
science---databases, specification theory, AI---and in
anthropology, economics, physics, and philosophical logic. |
![]() ![]() You may like...
Friction, Lubrication and Wear
Mohammad Asaduzzaman Chowdhury
Hardcover
R3,351
Discovery Miles 33 510
Informatics in Control, Automation and…
Joaquim Filipe, Kurosh Madani, …
Hardcover
R6,853
Discovery Miles 68 530
Industrial Engineering and Operations…
Antonio Marcio Tavares Thome, Rafael Garcia Barbastefano, …
Hardcover
R5,710
Discovery Miles 57 100
Topology and Geometry in Polymer Science
Stuart G. Whittington, Witt De Sumners, …
Hardcover
R2,996
Discovery Miles 29 960
Electrohydrodynamic Direct-Writing for…
Zhouping Yin, Yongan Huang, …
Hardcover
R3,360
Discovery Miles 33 600
|