![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This book is dedicated to the work of Alasdair Urquhart. The book starts out with an introduction to and an overview of Urquhart's work, and an autobiographical essay by Urquhart. This introductory section is followed by papers on algebraic logic and lattice theory, papers on the complexity of proofs, and papers on philosophical logic and history of logic. The final section of the book contains a response to the papers by Urquhart. Alasdair Urquhart has made extremely important contributions to a variety of fields in logic. He produced some of the earliest work on the semantics of relevant logic. He provided the undecidability of the logics R (of relevant implication) and E (of relevant entailment), as well as some of their close neighbors. He proved that interpolation fails in some of those systems. Urquhart has done very important work in complexity theory, both about the complexity of proofs in classical and some nonclassical logics. In pure algebra, he has produced a representation theorem for lattices and some rather beautiful duality theorems. In addition, he has done important work in the history of logic, especially on Bertrand Russell, including editing Volume four of Russell's Collected Papers.
The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L'Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.
Communication Yearbook 26 is devoted to publishing state-of-the-art literature reviews in which authors critique and synthesize a body of communication research. This volume continues the tradition of publishing critical, integrative reviews of specific lines of research. Chapters focus on comprehending speaker meaning; understanding family communication patterns and family functioning; affection in interpersonal relationships; audience activity and passivity; the political influence of business organizations in public policy. In addition, chapters discuss emotional intelligence in organizational communication; professionalism and social responsibility in the field of public relations; climate of opinion; ideology and the study of identity in interethnic communication; technology and the physician-patient relationship; and communication across the life span. Representing media, interpersonal, intercultural, and other areas of communication, this is an important reference on current research for scholars and students in the social sciences.
Linear algebra is one of the most important branches of mathematics - important because of its many applications to other areas of mathematics, and important because it contains a wealth of ideas and results which are basic to pure mathematics. This book gives an introduction to linear algebra, and develops and proves its fundamental properties and theorems taking a pure mathematical approach - linear algebra contains some fine pure mathematics. Its main topics include: vector spaces and algebras, dimension, linear maps, direct sums, and (briefly) exact sequences; matrices and their connections with linear maps, determinants (properties proved using some elementary group theory), and linear equations; Cayley-Hamilton and Jordan theorems leading to the spectrum of a linear map - this provides a geometric-type description of these maps; Hermitian and inner product spaces introducing some metric properties (distance, perpendicularity etc.) into the theory, also unitary and orthogonal maps and matrices; applications to finite fields, mathematical coding theory, finite matrix groups, the geometry of quadratic forms, quaternions and Cayley numbers, and some basic group representation theory; and, a large number of examples, exercises and problems are provided. It gives answers and/or sketch solutions to all of the problems in an appendix -some of these are theoretical and some numerical, both types are important. No particular computer algebra package is discussed but a number of the exercises are intended to be solved using one of these packages chosen by the reader. The approach is pure-mathematical, and the intended readership is undergraduate mathematicians, also anyone who requires a more than basic understanding of the subject. This book will be most useful for a 'second course' in linear algebra, that is for students that have seen some elementary matrix algebra. But as all terms are defined from scratch, this book can be used for a 'first course' for more advanced students.
* Fosters a new consensus by articulating a balanced and integrative view to show the relevance of the empirical study of intentional interaction * Connects expression with moral psychology to give a detailed and perspicuous presentation of the second person interaction * A unique new resource for academics and students of social cognition, social and cognitive neuroscience, the cognitive sciences, philosophy, and metaphysics
Introduces a new web-based optimizer for Geometric algebra algorithms; Supports many programming languages as well as hardware; Covers the advantages of High-dimensional algebras; Includes geometrically intuitive support of quantum computing
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.
This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of categorical algebra, showcasing its versatility through applications to C*- and MV-algebras, fuzzy sets and automata. With exercises and historical remarks at the end of each chapter, this self-contained book provides readers with a valuable source of references and hints for future research. This book will appeal to researchers across mathematics and computer science with an interest in category theory, lattice theory, and many-valued logic.
In this age of technology where messages are transmitted in sequences of 0's and 1's through space, errors can occur due to noisy channels. Thus, self-correcting code is vital to eradicate these errors when the number of errors is small. It is widely used in industry for a variety of applications including e-mail, telephone, and remote sensing (for example, photographs of Mars).An expert in algebra and algebraic geometry, Tzuong-Tsieng Moh covers many essential aspects of algebraic coding theory in this book, such as elementary algebraic coding theories, the mathematical theory of vector spaces and linear algebras behind them, various rings and associated coding theories, a fast decoding method, useful parts of algebraic geometry and geometric coding theories.This book is accessible to advanced undergraduate students, graduate students, coding theorists and algebraic geometers.
This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics
This book investigates the geometry of the quaternion and octonion algebras. Following a comprehensive historical introduction, the special properties of 3- and 4-dimensional Euclidean spaces are illuminated using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The arithmetics of the quaternions and octonions are also described, and the book concludes with a new theory of octonion factorization. Topics covered include: - history - the geometry of complex numbers - quaternions and 3-dimensional groups - quaternions and 4-dimensional groups - the Hurwitz integral quaternions - the composition algebras - Moufang loops - octonions and 8-dimensional geometry - integral octonions - the octonion projective plane
This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota-Baxter algebras are explored. Algebra and Applications 2 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.
* Includes interdisciplinary contributions and brings together research on a range of extreme behaviors in one volume, by making theoretical links between different contexts * Explores the brain, hormones, and behaviour to offer insights into the mechanisms and processes that enable extremism to explain their occurrence and the conditions under which they may be likely to emerge * Ideal reading for high-level students taking courses on extremism, academics, and professionals dealing with extreme behavior
This book is mainly intended for first-year University students who undertake a basic abstract algebra course, as well as instructors. It contains the basic notions of abstract algebra through solved exercises as well as a 'True or False' section in each chapter. Each chapter also contains an essential background section, which makes the book easier to use.
This book is mainly intended for first-year University students who undertake a basic abstract algebra course, as well as instructors. It contains the basic notions of abstract algebra through solved exercises as well as a 'True or False' section in each chapter. Each chapter also contains an essential background section, which makes the book easier to use.
Features: Suitable for PhD candidates and researchers. Requires prerequisites in set theory, general topology and abstract algebra, but is otherwise self-contained.
Combines discussion of a theoretical model with essays about social class and classism experience, offering a unique approach that helps students learn theory and apply it to different contexts. Accompanied by an Instructors' Guide which offers more in-depth exploration and commentary, as well as discussion questions, writing prompts, and activity suggestions, making this the ideal resource for lecturers teaching courses on social class. Addresses the gap in psychological literature in terms of considering social class in relation to psychology and shows how the SCWM-R model can be applied to real life scenarios.
Physical oncology has the potential to revolutionize cancer research and treatment. The fundamental rationale behind this approach is that physical processes, such as transport mechanisms for drug molecules within tissue and forces exchanged by cancer cells with tissue, may play an equally important role as biological processes in influencing progression and treatment outcome. This book introduces the emerging field of physical oncology to a general audience, with a focus on recent breakthroughs that help in the design and discovery of more effective cancer treatments. It describes how novel mathematical models of physical transport processes incorporate patient tissue and imaging data routinely produced in the clinic to predict the efficacy of many cancer treatment approaches, including chemotherapy and radiation therapy. By helping to identify which therapies would be most beneficial for an individual patient, and quantifying their effects prior to actual implementation in the clinic, physical oncology allows doctors to design treatment regimens customized to each patient's clinical needs, significantly altering the current clinical approach to cancer treatment and improving the outcomes for patients.
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras."
Spatializing Social Media charts the theoretical and methodological challenges in analyzing and visualizing social media data mapped to geographic areas. It introduces the reader to concepts, theories, and methods that sit at the crossroads between spatial and social network analysis to unpack the conceptual differences between online and face-to-face social networks and the nonlinear effects triggered by social activity that overlaps online and offline. The book is divided into four sections, with the first accounting for the differences between space (the geometrical arrangements that structure and enable forms of interaction) and place (the mechanisms through which social meanings are attached to physical locations). The second section covers the rationale of social network analysis and the ontological differences, stating that relationships, more than individual and independent attributes, are key to understanding of social behavior. The third section covers a range of case studies that successfully mapped social media activity to geographically situated areas and considers the inflection of homophilous dependencies across online and offline social networks. The fourth and last section of the book explores a range of networks and discusses methods for and approaches to plotting a social network graph onto a map, including the purpose-built R package Spatial Social Media. The book takes a non-mathematical approach to social networks and spatial statistics suitable for postgraduate students in sociology, psychology and the social sciences.
The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.
-Number one text for depth and comprehensive coverage: detailed analysis of existing knowledge and practice -Comprehensively updated in 7th edition with latest research findings, theoretical developments and applications to practice. -Well structured and easily navigable: topic areas clearly defined and packaged to fit course delivery -Unmatched authority: highly recognized author and five previously successful editions -Links theory to practice to help students learn and apply key skills -Offers a strong UK-originated alternative to other US-oriented texts -Flexible and cross-disciplinary: applies to a broad range of professional roles and contexts
This book presents methods for the summation of infinite and finite series and the related identities and inversion relations. The summation includes the column sums and row sums of lower triangular matrices. The convergence of the summation of infinite series is considered. The author's focus is on symbolic methods and the Riordan array approach. In addition, this book contains hundreds summation formulas and identities, which can be used as a handbook for people working in computer science, applied mathematics, and computational mathematics, particularly, combinatorics, computational discrete mathematics, and computational number theory. The exercises at the end of each chapter help deepen understanding. Much of the materials in this book has never appeared before in textbook form. This book can be used as a suitable textbook for advanced courses for high lever undergraduate and lower lever graduate students. It is also an introductory self-study book for re- searchers interested in this field, while some materials of the book can be used as a portal for further research.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. |
You may like...
Human Origins - Contributions from…
Camilla Power, Morna Finnegan, …
Paperback
R954
Discovery Miles 9 540
Culture and Retardation - Life Histories…
L. L Langness, Harold G. Levine
Hardcover
R1,527
Discovery Miles 15 270
|