![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This book is mainly intended for first-year University students who undertake a basic abstract algebra course, as well as instructors. It contains the basic notions of abstract algebra through solved exercises as well as a 'True or False' section in each chapter. Each chapter also contains an essential background section, which makes the book easier to use.
Features: Suitable for PhD candidates and researchers. Requires prerequisites in set theory, general topology and abstract algebra, but is otherwise self-contained.
Combines discussion of a theoretical model with essays about social class and classism experience, offering a unique approach that helps students learn theory and apply it to different contexts. Accompanied by an Instructors' Guide which offers more in-depth exploration and commentary, as well as discussion questions, writing prompts, and activity suggestions, making this the ideal resource for lecturers teaching courses on social class. Addresses the gap in psychological literature in terms of considering social class in relation to psychology and shows how the SCWM-R model can be applied to real life scenarios.
Physical oncology has the potential to revolutionize cancer research and treatment. The fundamental rationale behind this approach is that physical processes, such as transport mechanisms for drug molecules within tissue and forces exchanged by cancer cells with tissue, may play an equally important role as biological processes in influencing progression and treatment outcome. This book introduces the emerging field of physical oncology to a general audience, with a focus on recent breakthroughs that help in the design and discovery of more effective cancer treatments. It describes how novel mathematical models of physical transport processes incorporate patient tissue and imaging data routinely produced in the clinic to predict the efficacy of many cancer treatment approaches, including chemotherapy and radiation therapy. By helping to identify which therapies would be most beneficial for an individual patient, and quantifying their effects prior to actual implementation in the clinic, physical oncology allows doctors to design treatment regimens customized to each patient's clinical needs, significantly altering the current clinical approach to cancer treatment and improving the outcomes for patients.
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras."
Spatializing Social Media charts the theoretical and methodological challenges in analyzing and visualizing social media data mapped to geographic areas. It introduces the reader to concepts, theories, and methods that sit at the crossroads between spatial and social network analysis to unpack the conceptual differences between online and face-to-face social networks and the nonlinear effects triggered by social activity that overlaps online and offline. The book is divided into four sections, with the first accounting for the differences between space (the geometrical arrangements that structure and enable forms of interaction) and place (the mechanisms through which social meanings are attached to physical locations). The second section covers the rationale of social network analysis and the ontological differences, stating that relationships, more than individual and independent attributes, are key to understanding of social behavior. The third section covers a range of case studies that successfully mapped social media activity to geographically situated areas and considers the inflection of homophilous dependencies across online and offline social networks. The fourth and last section of the book explores a range of networks and discusses methods for and approaches to plotting a social network graph onto a map, including the purpose-built R package Spatial Social Media. The book takes a non-mathematical approach to social networks and spatial statistics suitable for postgraduate students in sociology, psychology and the social sciences.
The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.
-Number one text for depth and comprehensive coverage: detailed analysis of existing knowledge and practice -Comprehensively updated in 7th edition with latest research findings, theoretical developments and applications to practice. -Well structured and easily navigable: topic areas clearly defined and packaged to fit course delivery -Unmatched authority: highly recognized author and five previously successful editions -Links theory to practice to help students learn and apply key skills -Offers a strong UK-originated alternative to other US-oriented texts -Flexible and cross-disciplinary: applies to a broad range of professional roles and contexts
This book presents methods for the summation of infinite and finite series and the related identities and inversion relations. The summation includes the column sums and row sums of lower triangular matrices. The convergence of the summation of infinite series is considered. The author's focus is on symbolic methods and the Riordan array approach. In addition, this book contains hundreds summation formulas and identities, which can be used as a handbook for people working in computer science, applied mathematics, and computational mathematics, particularly, combinatorics, computational discrete mathematics, and computational number theory. The exercises at the end of each chapter help deepen understanding. Much of the materials in this book has never appeared before in textbook form. This book can be used as a suitable textbook for advanced courses for high lever undergraduate and lower lever graduate students. It is also an introductory self-study book for re- searchers interested in this field, while some materials of the book can be used as a portal for further research.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.
First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography
This volume contains invited articles by top-notch experts who
focus on such topics as: modular representations of algebraic
groups, representations of quantum groups and crystal bases,
representations of affine Lie algebras, representations of affine
Hecke algebras, modular or ordinary representations of finite
reductive groups, and representations of complex reflection groups
and associated Hecke algebras.
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic types of models. New homotopy techniques are applied to Marin Lof types of computations with model categories. Functorial computability, induction, and recursion are examined in view of the above, presenting new computability techniques with monad transformations and projective sets. This informative volume will give readers a complete new feel for models, computability, recursion sets, complexity, and realizability. This book pulls together functorial thoughts, models, computability, sets, recursion, arithmetic hierarchy, filters, with real tree computing areas, presented in a very intuitive manner for university teaching, with exercises for every chapter. The book will also prove valuable for faculty in computer science and mathematics.
Noncommutative Polynomial Algebras of Solvable Type and Their Modules is the first book to systematically introduce the basic constructive-computational theory and methods developed for investigating solvable polynomial algebras and their modules. In doing so, this book covers: A constructive introduction to solvable polynomial algebras and Groebner basis theory for left ideals of solvable polynomial algebras and submodules of free modules The new filtered-graded techniques combined with the determination of the existence of graded monomial orderings The elimination theory and methods (for left ideals and submodules of free modules) combining the Groebner basis techniques with the use of Gelfand-Kirillov dimension, and the construction of different kinds of elimination orderings The computational construction of finite free resolutions (including computation of syzygies, construction of different kinds of finite minimal free resolutions based on computation of different kinds of minimal generating sets), etc. This book is perfectly suited to researchers and postgraduates researching noncommutative computational algebra and would also be an ideal resource for teaching an advanced lecture course.
Combines discussion of a theoretical model with essays about social class and classism experience, offering a unique approach that helps students learn theory and apply it to different contexts. Accompanied by an Instructors' Guide which offers more in-depth exploration and commentary, as well as discussion questions, writing prompts, and activity suggestions, making this the ideal resource for lecturers teaching courses on social class. Addresses the gap in psychological literature in terms of considering social class in relation to psychology and shows how the SCWM-R model can be applied to real life scenarios.
This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.
Structures are defined by laws of composition, rules of generation, and relations. The objects on which these laws operate may be numbers, geometric objects like points and lines, or abstract symbols. Algebra is the study of mathematical laws, with a search for general principles that do not depend on what the objects are. Fundamental Structures of Algebra and Discrete Mathematics is an introduction to the twelve basic kinds of structures - sets, ordered sets, groups, rings, fields, vector spaces, graphs, lattices, matroids, topological spaces, universal algebras, and categories - that underlie algebra and discrete mathematics. Beginning with the most basic type of structure, sets, this unique reference provides a detailed look at the theoretical underpinning of each structure, shedding light on the significance of each structure as well as their interrelation. Using a self-contained approach that requires little previous knowledge of mathematical definitions, results, or methods, the book examines selected key aspects of these structures, including closure systems, generators, substructures, homomorphisms and congruences, equational axioms, connections with basic set theory, finiteness conditions, combinatorial properties, and discrete algorithmic procedures. Several classical results are proved, including the Abel-Ruffini theorem on unsolvability by radicals, Helly's theorem on intersecting convex sets, and a simplified version of the Godel-Herbrand completeness theorem. Many of the results are relevant to current research. Highly interactive in approach, the book features numerous exercises and examples woven throughout the text that allow the reader to become fully acquainted withthe character and function of each structure. Additional questions, designed to stretch the reader's analytical skills, appear at the end of each section. Similar to a grammar book that explains the fundamental structures essential to mastering a language, Fundamental Structures of Algebra and Discrete Mathematics is a systematic examination of the basic algebraic structures needed to understand and manipulate advanced mathematical concepts. A cornerstone reference that is both a clear primer and rigorous study guide, Fundamental Structures of Algebra and Discrete Mathematics is indispensable to the student and professional seeking to learn or use the methods of modern algebra.
Originally published in 1982, Time Resources, Society and Ecology examines and seeks to examine the time dimension in terms of the ecology, technology, social organization and spatial structure of the human habitat. Approaches to time resources - sociological time-budget studies, anthropological activity analysis, and economic analysis of money allocation - have been limited by their sectoral scope or their failure to relate effectively to the processes of social interaction, technological change and environmental structure. In this book, the book's articulation of time resources is developed in a general theoretical framework of action and interaction in time and space. The book examines constraints and possibilities facing preindustrial societies and throws light on the impact of technology on modern societies. Basic models of time allocation are presented, and, finally, a cross-cultural comparison is made of the mobilization of time resources in preindustrial societies. Geographers, social anthropologists and human ecologists should find this work directly relevant to their interest in understanding the interactions between man and environment.
The purpose of Numerical Linear Algebra in Signals, Systems and Control is to present an interdisciplinary book, blending linear and numerical linear algebra with three major areas of electrical engineering: Signal and Image Processing, and Control Systems and Circuit Theory. Numerical Linear Algebra in Signals, Systems and Control will contain articles, both the state-of-the-art surveys and technical papers, on theory, computations, and applications addressing significant new developments in these areas. The goal of the volume is to provide authoritative and accessible accounts of the fast-paced developments in computational mathematics, scientific computing, and computational engineering methods, applications, and algorithms. The state-of-the-art surveys will benefit, in particular, beginning researchers, graduate students, and those contemplating to start a new direction of research in these areas. A more general goal is to foster effective communications and exchange of information between various scientific and engineering communities with mutual interests in concepts, computations, and workable, reliable practices.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Differential geometry is the study of the curvature and calculus of curves and surfaces. "A New Approach to Differential Geometry using Clifford's Geometric Algebra" simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. "" Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities. "
LINEAR ALGEBRA EXPLORE A COMPREHENSIVE INTRODUCTORY TEXT IN LINEAR ALGEBRA WITH COMPELLING SUPPLEMENTARY MATERIALS, INCLUDING A COMPANION WEBSITE AND SOLUTIONS MANUALS Linear Algebra delivers a fulsome exploration of the central concepts in linear algebra, including multidimensional spaces, linear transformations, matrices, matrix algebra, determinants, vector spaces, subspaces, linear independence, basis, inner products, and eigenvectors. While the text provides challenging problems that engage readers in the mathematical theory of linear algebra, it is written in an accessible and simple-to-grasp fashion appropriate for junior undergraduate students. An emphasis on logic, set theory, and functions exists throughout the book, and these topics are introduced early to provide students with a foundation from which to attack the rest of the material in the text. Linear Algebra includes accompanying material in the form of a companion website that features solutions manuals for students and instructors. Finally, the concluding chapter in the book includes discussions of advanced topics like generalized eigenvectors, Schur's Lemma, Jordan canonical form, and quadratic forms. Readers will also benefit from the inclusion of: A thorough introduction to logic and set theory, as well as descriptions of functions and linear transformations An exploration of Euclidean spaces and linear transformations between Euclidean spaces, including vectors, vector algebra, orthogonality, the standard matrix, Gauss-Jordan elimination, inverses, and determinants Discussions of abstract vector spaces, including subspaces, linear independence, dimension, and change of basis A treatment on defining geometries on vector spaces, including the Gram-Schmidt process Perfect for undergraduate students taking their first course in the subject matter, Linear Algebra will also earn a place in the libraries of researchers in computer science or statistics seeking an accessible and practical foundation in linear algebra.
Most students in abstract algebra classes have great difficulty making sense of what the instructor is saying. Moreover, this seems to remain true almost independently of the quality of the lecture. This book is based on the constructivist belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities which will establish an experiential base for any future verbal explanation. No less, they need to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies as well as on the substantial experience of the authors in teaching astract algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the mathlike programming language ISETL; the main tool for reflections is work in teams of 2-4 students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics, there is very little programming overhead: learning to program is inseparable from learning the mathematics. Each topic is first introduced through computer activities, which are then followed by a text section and exercises. This text section is written in an informed, discusive style, closely relating definitions and proofs to the constructions in the activities. Notions such as cosets and quotient groups become much more meaningful to the students than when they are preseted in a lecture. |
You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
|