![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This book describes the solution of electrodynamic boundary problems, which arose in the practical life of a designer. Only a few problems can be solved analytically and some of these solutions are given in the book, for example, the computation of a strip line in a rectangular or circular cylinder capacitance. Practical lines' configurations require computational work. As the authors' practice shows, the use of Green functions, leading to singular integral equations, is a powerful and pretty universal method to solve different boundary problems, including electrodynamic ones. The book presents the results of computations of microstrip lines on magnetized (longitudinally and transversally) ferrite and semiconductor substrates taking into account all the geometric sizes. The properties of gyrotropic media are described in the book for the reader's convenience. The geometrical shape may be practically any. The integral equations are exact and give the proper field near the edges. Actually, the use of singular integral equations reduces the experimental verification to minimum. The book will be useful for students, engineers, designers and researchers. It contains a lot of computed results, which are verified experimentally and can be used immediately.
This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practitioners in research and industry need a fundamental and sound understanding of the principles. This work presents the underlying physical foundations.
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, Euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are more demanding. This text grew out of lectures which the author gave at the N.S.F. Advanced Science Seminar on Algebraic Groups at Bowdoin College in 1968.
This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Groebner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.
Graph models are extremely useful for a large number of applications as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones, social networks - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming. The focus of this highly self-contained book is on homomorphisms and endomorphisms, matrices and eigenvalues.
* Examines fragments of real multimodal communication, which provides insights on the universal mechanisms and devices of power and social influence * Enhances the readers awareness of how people may use multimodal communication to achieve and maintain power, and of how, by their own body, they may influence others and defend themselves from their influence, making this essential reading for students and academics * Refers to a variety of contexts in which communication is used and adapted, including in everyday life, at work, at school, and in politics to show the similarities and differences in these environments
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference "New Pathways between Group Theory and Model Theory," which took place February 1-4, 2016, in Mulheim an der Ruhr, Germany, in honor of the editors' colleague Rudiger Goebel. This publication is dedicated to Professor Goebel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
The main TOPIC of this book is that of Groebner bases and their applications. The main PURPOSE of this book is that of bridging the current gap in the literature between theory and real computation. The book can be used by teachers and students alike as a comprehensive guide to both the theory and the practice of Computational Commutative Algebra. It has been made as self-contained as possible, and thus is ideally suited as a textbook for graduate or advanced undergraduate courses. Numerous applications are described, covering fields as disparate as algebraic geometry and financial markets. To aid a deeper understanding of these applications there are 44 tutorials aimed at illustrating how the theory can be used in these cases. The computational aspects of the tutorials can be carried out with the computer algebra system CoCoA, an introduction to which appears in an appendix. Besides the tutorials there are plenty of exercises, some of a theoretical nature and others more practical.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
The book gives a comprehensive account of the basic algebraic properties of the classical groups over rings. Much of the theory appears in book form for the first time, and most proofs are given in detail. The book also includes a revised and expanded version of DieudonnA(c)'s classical theory over division rings. The authors analyse congruence subgroups, normal subgroups and quotient groups, they describe their isomorphisms and investigate connections with linear and hermitian K-theory. A first insight is offered through the simplest case of the general linear group. All the other classical groups, notably the symplectic, unitary and orthogonal groups, are dealt with uniformly as isometry groups of generalized quadratic modules. New results on the unitary Steinberg groups, the associated K2-groups and the unitary symbols in these groups lead to simplified presentation theorems for the classical groups. Related material such as the K-theory exact sequences of Bass and Sharpe and the Merkurjev-Suslin theorem is outlined. "From" "the foreword by J. DieudonnA(c): " "All mathematicians interested in classical groups should be grateful to these two outstanding investigators for having brought together old and new results (many of them their own) into a superbly organized whole. I am confident that their book will remain for a long time the standard reference in the theory."
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.
Courses on mathematical programming are now part of standard teaching programs of universities and institutes. The aim of this book is to introduce students of mathematics, economics, technology and other related subjects to the qualitative theory of mathematical programming in paired vector spaces. Prerequisite for the study of this book is only a basic knowledge of analysis, of elements of functional analysis and linear algebra. The application of elementary ideas of functional analysis is convenient for a more rigorous construction of proofs and for some generalizations of the finite dimensional theory on infinite dimensional Banach-spaces. An important feature of this book is the use of a principle of duality to formulate the theoretical basis of many different concrete programming problems. The main idea of the book is to present relations of duality and to construct a general theoretical basis for different special programming problems.
The aim of this book is to extend the understanding of the fundamental role of generalizations of Lie and related non-commutative and non-associative structures in Mathematics and Physics. This is a thematic volume devoted to the interplay between several rapidly exp- ding research ?elds in contemporary Mathematics and Physics, such as generali- tions of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, n- commutative geometry and applications in Physics and beyond. The speci?c ?elds covered by this volume include: * Applications of Lie, non-associative and non-commutative associative structures to generalizations of classical and quantum mechanics and non-linear integrable systems, operadic and group theoretical methods; * Generalizations and quasi-deformations of Lie algebras such as color and super Lie algebras, quasi-Lie algebras, Hom-Lie algebras, in?nite-dimensional Lie algebras of vector ?elds associated to Riemann surfaces, quasi-Lie algebras of Witt type and their central extensions and deformations important for in- grable systems, for conformal ? eld theory and for string theory; * Non-commutative deformation theory, moduli spaces and interplay with n- commutativegeometry,algebraicgeometryandcommutativealgebra,q-deformed differential calculi and extensions of homological methods and structures; * Crossed product algebras and actions of groups and semi-groups, graded rings and algebras, quantum algebras, twisted generalizations of coalgebras and Hopf algebra structures such as Hom-coalgebras, Hom-Hopf algebras, and super Hopf algebras and their applications to bosonisation, parastatistics, parabosonic and parafermionic algebras, orthoalgebas and root systems in quantum mechanics;
This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.
From the Preface: "topics are: (a) valuation theory; (b) theory of polynomial and power series rings (including generalizations to graded rings and modules); (c) local algebra... the algebro-geometric connections and applications of the purely algebraic material are constantly stressed and abundantly scattered throughout the exposition. Thus, this volume can be used in part as an introduction to some basic concepts and the arithmetic foundations of algebraic geometry."
Algorithms in algebraic geometry go hand in hand with software packages that implement them. Together they have established the modern field of computational algebraic geometry which has come to play a major role in both theoretical advances and applications. Over the past fifteen years, several excellent general purpose packages for computations in algebraic geometry have been developed, such as, CoCoA, Singular and Macaulay 2. While these packages evolve continuously, incorporating new mathematical advances, they both motivate and demand the creation of new mathematics and smarter algorithms. This volume reflects the workshop a oeSoftware for Algebraic Geometrya held in the week from 23 to 27 October 2006, as the second workshop in the thematic year on Applications of Algebraic Geometry at the IMA. The papers in this volume describe the software packages Bertini, PHClab, Gfan, DEMiCs, SYNAPS, TrIm, Gambit, ApaTools, and the application of Risa/Asir to a conjecture on multiple zeta values. They offer the reader a broad view of current trends in computational algebraic geometry through software development and applications.
There exists a vast literature on numerical methods of linear algebra. In our bibliography list, which is by far not complete, we included some monographs on the subject [46], [15], [32], [39], [11], [21]. The present book is devoted to the theory of algorithms for a single problem of linear algebra, namely, for the problem of solving systems of linear equations with non-full-rank matrix of coefficients. The solution of this problem splits into many steps, the detailed discussion of which are interest ing problems on their own (bidiagonalization of matrices, computation of singular values and eigenvalues, procedures of deflation of singular values, etc. ). Moreover, the theory of algorithms for solutions of the symmetric eigenvalues problem is closely related to the theory of solv ing linear systems (Householder's algorithms of bidiagonalization and tridiagonalization, eigenvalues and singular values, etc. ). It should be stressed that in this book we discuss algorithms which to computer programs having the virtue that the accuracy of com lead putations is guaranteed. As far as the final program product is con cerned, this means that the user always finds an unambiguous solution of his problem. This solution might be of two kinds: 1. Solution of the problem with an estimate of errors, where abso lutely all errors of input data and machine round-offs are taken into account. 2.
Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors' investigations, and this new monograph will be interesting for researchers studying the theory of functions.
Introduction In the last few years a few monographs dedicated to the theory of topolog ical rings have appeared [Warn27], [Warn26], [Wies 19], [Wies 20], [ArnGM]. Ring theory can be viewed as a particular case of Z-algebras. Many general results true for rings can be extended to algebras over commutative rings. In topological algebra the structure theory for two classes of topological algebras is well developed: Banach algebras; and locally compact rings. The theory of Banach algebras uses results of Banach spaces, and the theory of locally compact rings uses the theory of LCA groups. As far as the author knows, the first papers on the theory of locally compact rings were [Pontr1]' [J1], [J2], [JT], [An], lOt], [K1]' [K2]' [K3], [K4], [K5], [K6]. Later two papers, [GS1,GS2]appeared, which contain many results concerning locally compact rings. This book can be used in two w.ays. It contains all necessary elementary results from the theory of topological groups and rings. In order to read these parts of the book the reader needs to know only elementary facts from the theories of groups, rings, modules, topology. The book consists of two parts. |
![]() ![]() You may like...
Intelligent Data Analytics for…
Ravinesh C. Deo, Pijush Samui, …
Hardcover
R5,173
Discovery Miles 51 730
Natural Hazards and Disaster Justice…
Anna Lukasiewicz, Claudia Baldwin
Hardcover
R4,142
Discovery Miles 41 420
Quantitative Methods in Pharmaceutical…
Olga V. Marchenko, Natallia V Katenka
Hardcover
R3,688
Discovery Miles 36 880
|