![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
Commutative Algebra, Singularities and Computer Algebra presents current trends in commutative algebra, algebraic combinatorics, singularity theory and computer algebra, and highlights the interaction between these disciplines. Contributions by leading international mathematicians thoroughly discuss topics in: modules theory, integrally closed ideals and determinantal ideals, singularities in projective spaces and Castelnuovo-Mumford regularity, Groebner and SAGBI basis, and the use of the computer packages Bergman, CoCoA and SINGULAR.
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
Shape theory is an extension of homotopy theory from the realm of CW-complexes to arbitrary spaces. Besides applications in topology, it has interesting applications in various other areas of mathematics, especially in dynamical systems and C*-algebras. Strong shape is a refinement of ordinary shape with distinct advantages over the latter. Strong homology generalizes Steenrod homology and is an invariant of strong shape. The book gives a detailed account based on approximation of spaces by polyhedra (ANR's) using the technique of inverse systems. It is intended for researchers and graduate students. Special care is devoted to motivation and bibliographic notes.
This is an updated English translation of "Cohomologie Galoisienne", published more than 30 years ago as one of the very first Lecture Notes in Mathematics. It includes a reproduction of an influential paper of R. Steinberg, together with some new material and an expanded bibliography.
This book offers an essential review of central theories, current research and applications in the field of numerical representations of ordered structures. It is intended as a tribute to Professor Ghanshyam B. Mehta, one of the leading specialists on the numerical representability of ordered structures, and covers related applications to utility theory, mathematical economics, social choice theory and decision-making. Taken together, the carefully selected contributions provide readers with an authoritative review of this research field, as well as the knowledge they need to apply the theories and methods in their own work.
On the basis of Hua Loo-Kengs results on harmonic analysis on classical groups, the author Gong Sheng develops his subject further, drawing togetherresults of his own research as well as works from other Chinese mathematicians. The book is divided into three parts studying harmonic analysis of various groups. Starting with the discussion on unitary groups in part one, the author moves on to rotation groups and unitary symplectic groups in parts 2 and 3. Thus the book provides a survey of harmonic analysis on characteristic manifold of classical domain of first type for real fields, complex fields and quaternion fields. This study will appeal to a wide range of readers from senior mathematics students up to graduate students and to teachers in this field of mathematics.
Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems.
This concise, fast-paced text introduces the concepts and applications behind plane networks. It presents fundamental material from linear algebra and differential equations, and offers several different applications of the continuous theory. Practical problems, supported by MATLAB files, underscore the theory; additional material can be downloaded from the author's website.
The Influence Line Approach to the Analysis of Rigid Frames offers a simple method of analysis of indeterminate structures. It is original and independent of other methods. The author derived these equations by applying an algebraic rather than an arithmetical method of distribution of fixed-end moments. His method is fully explained and illustrated by worked examples. The equations listed in the Tables in The Influence Line Approach to the Analysis of Rigid Frames offer a simple approach to the analysis of rigid frames, including building frames, rendering them statically determinate for any system of loading, static or moving and including the self weight of a structure. Particularly useful aspects to the reader are:
The fusion of algebra, analysis and geometry, and their application to real world problems, have been dominant themes underlying mathematics for over a century. Geometric algebras, introduced and classified by Clifford in the late 19th century, have played a prominent role in this effort, as seen in the mathematical work of Cartan, Brauer, Weyl, Chevelley, Atiyah, and Bott, and in applications to physics in the work of Pauli, Dirac and others. One of the most important applications of geometric algebras to geometry is to the representation of groups of Euclidean and Minkowski rotations. This aspect and its direct relation to robotics and vision will be discussed in several chapters of this multi-authored textbook, which resulted from the ASI meeting. Moreover, group theory, beginning with the work of Burnside, Frobenius and Schur, has been influenced by even more general problems. As a result, general group actions have provided the setting for powerful methods within group theory and for the use of groups in applications to physics, chemistry, molecular biology, and signal processing. These aspects, too, will be covered in detail. With the rapidly growing importance of, and ever expanding conceptual and computational demands on signal and image processing in remote sensing, computer vision, medical image processing, and biological signal processing, and on neural and quantum computing, geometric algebras, and computational group harmonic analysis, the topics of the book have emerged as key tools. The list of authors includes many of the world's leading experts in the development of new algebraic modeling and signal representation methodologies, novel Fourier-based andgeometric transforms, and computational algorithms required for realizing the potential of these new application fields.
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, Rome, in 2012. The conference gathered virtually all the main specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book includes both extended abstracts of the conference papers and new original works related to the theme of the conference.
This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world's leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.
This volume begins with a description of Alladi Ramakrishnan's remarkable scientific career and his grand vision that led to the creation of The Institute of Mathematical Sciences (MATSCIENCE), in Madras (now Chennai), India, in 1962. The lists of his research publications, his PhD students, and other relevant facts relating to his eventful career are included. The inclusion of both research and survey articles by leading mathematicians, statisticians, and physicists who got to know Alladi Ramakrishnan over the years and admired his significant contributions to research and to the scientific profession, have been written and dedicated in this volume to Ramakrishnan's memory.
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.
This book presents a unified mathematical treatment of diverse problems in the fields of cognitive systems using Clifford, or geometric, algebra. Geometric algebra provides a rich general mathematical framework for the development of the ideas of multilinear algebra, projective and affine geometry, calculus on manifolds, the representation of Lie groups and Lie algebras, and many other areas of applications. By treating a wide spectrum of problems in a common geometric language, the book offers both new insights and new solutions that should be useful to scientists and engineers working in different but related areas of artificial intelligence. It looks at building intelligence systems through the construction of Perception Action Cycles; critical to this concept is incorporating representation and learning in a flexible geometric system. Each chapter is written in accessible terms accompanied by numerous examples and figures that clarify the application of geometric algebra to problems in geometric computing, image processing, computer vision, robotics, neural computing and engineering. Topics and features: *Introduces a nonspecialist to Clifford, or geometric, algebra and it shows applications in artificial intelligence *Thorough discussion of several tasks of signal and image processing, computer vision, robotics, neurocomputing and engineering using the geometric algebra framework *Features the computing frameworks of the linear model n-dimensional affine plane and the nonlinear model of Euclidean space known as the horosphere, and addresses the relationship of these models to conformal, affine and projective geometries *Applications of geometric algebra to other related areas: aeronautics, mechatronics, graphics engineering, and speech processing *Exercises and hints for the development of future computer software packages for extensive calculations in geometric algebra The book is an essential resource for computer scientists, AI researchers, and electrical engineers and includes computer programs to clarify and demonstrate the importance of geometric computing for cognitive systems and artificial autonomous systems research.
Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo logical algebra and algebraic K-theory. It arose primarily in the 1920's and 1930's independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N"
Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students. The exercises have also been improved and a new chapter on ordered fields has been included. About the first edition: ... the author has gotten across many important ideas and results. This book should not only work well as a textbook for a beginning graduate course in field theory, but also for a student who wishes to take a field theory course as independent study. - J. N. Mordeson, Zentralblatt. The book is written in a clear and explanatory style. It contains over 235 exercises which provide a challenge to the reader. The book is recommended for a graduate course in field theory as well as for independent study. - T.
Commutative Ring Theory emerged as a distinct field of research in math ematics only at the beginning of the twentieth century. It is rooted in nine teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area."
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie." These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting. The well known topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects, leading up to the localization theorems and other very recent results."
In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m, n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science.
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? The third edition improves the second edition in two ways: First it removes many typos and mathematical inaccuracies that occur in the second edition (in particular in the references). Secondly, the third edition reports on five open problems (out of thirtyfour open problems of the second edition) that have been partially or fully solved since that edition appeared in 2005.
This self-contained work, focusing on the theory of state spaces of C*-algebras and von Neumann algebras, explains how the oriented state space geometrically determines the algebra. The theory of orientation of C*-algebra state spaces is presented with a new approach that does not depend on Jordan algebras, and the theory of orientation of normal state spaces of von Neumann algebras is presented with complete proofs for the first time. The theory of operator algebras was initially motivated by applications to physics, but has recently found unexpected new applications to fields of pure mathematics as diverse as foliations and knot theory. Key features include: * first and only work devoted to state spaces of operator algebras--contains much material not available in existing books * prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * complete proofs of basic results on operator algebras presented so that no previous knowledge in the field is needed * detailed introduction develops basic tools used throughout the text * numerous chapter remarks on advanced topics of independent interest with references to the literature, or discussion of applications to physics "State Spaces of Operator Algebras" is intended for specialists in operator algebras, as well as graduate students and mathematicians seeking an overview of the field. The introduction to C*-algebras and von Neumann algebras may also be of interest in it own right for those wanting a quick introduction to basic concepts in those fields.
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
This book consists of eighteen articles in the area of `Combinatorial Matrix Theory' and `Generalized Inverses of Matrices'. Original research and expository articles presented in this publication are written by leading Mathematicians and Statisticians working in these areas. The articles contained herein are on the following general topics: `matrices in graph theory', `generalized inverses of matrices', `matrix methods in statistics' and `magic squares'. In the area of matrices and graphs, speci_c topics addressed in this volume include energy of graphs, q-analog, immanants of matrices and graph realization of product of adjacency matrices. Topics in the book from `Matrix Methods in Statistics' are, for example, the analysis of BLUE via eigenvalues of covariance matrix, copulas, error orthogonal model, and orthogonal projectors in the linear regression models. Moore-Penrose inverse of perturbed operators, reverse order law in the case of inde_nite inner product space, approximation numbers, condition numbers, idempotent matrices, semiring of nonnegative matrices, regular matrices over incline and partial order of matrices are the topics addressed under the area of theory of generalized inverses. In addition to the above traditional topics and a report on CMTGIM 2012 as an appendix, we have an article on old magic squares from India.
This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitiit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische For schungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight different countries. For details about this and, more over, for a general historical overview of the development of the subject, we refer to the article "On the beginnings and development of near-ring theory" by G. Betsch 3]. During the last forty years the theory of nearrings and related algebraic struc tures like nearfields, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features. In its position between group theory and ring theory, this relatively young branch of algebra has not only a close relationship to these two more well-known areas of algebra, but it also has, just as these two theories, very intensive connections to many further branches of mathematics." |
![]() ![]() You may like...
Become A Better Writer - How To Write…
Donald Powers, Greg Rosenberg
Paperback
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,244
Discovery Miles 32 440
Technological Innovation for Applied AI…
Luis M. Camarinha-Matos, Pedro Ferreira, …
Hardcover
R3,419
Discovery Miles 34 190
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R600
Discovery Miles 6 000
|