![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
The monograph is devoted to the investigation of physical processes that govern the phonon transport in bulk and nanoscale single-crystal samples of cubic symmetry. Special emphasis is given to the study of phonon focusing in cubic crystals and its influence on the boundary scattering and lattice thermal conductivity of bulk materials and nanostructures.
This contributed volume brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Algebraic Combinatorics, Hyperplane Arrangements, Homological Algebra, and String Theory. The book aims to showcase the area, especially for the benefit of junior mathematicians and researchers who are new to the field; it will aid them in broadening their background and to gain a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.
Kasch Modules.- Compactness in Categories and Interpretations.- A Ring of Morita Context in Which Each Right Ideal is Weakly Self-injective.- Splitting Theorems and a Problem of Muller.- Decompositions of D1 Modules.- Right Cones in Groups.- On Extensions of Regular Rings of Finite Index by Central Elements.- Intersections of Modules.- Minimal Cogenerators Over Osofsky and Camillo Rings.- Uniform Modules Over Goldie Prime Serial Rings.- Co-Versus Contravariant Finiteness of Categories of Representations.- Monomials and the Lexicographic Order.- Rings Over Which Direct Sums of CS Modules Are CS.- Exchange Properties and the Total.- Local Bijective Gabriel Correspondence and Torsion Theoretic FBN Rings.- Normalizing Extensions and the Second Layer Condition.- Generators of Subgroups of Finite Index in GLm (?G).- Weak Relative Injective M-Subgenerated Modules.- Direct Product and Power Series Formations Over 2-Primal Rings.- Localization in Noetherian Rings.- Projective Dimension of Ideals in Von Neumann Regular Rings.- Homological Properties of Color Lie Superalgebras.- Indecomposable Modules Over Artinian Right Serial Rings.- Nonsingular Extending Modules.- Right Hereditary, Right Perfect Rings Are Semiprimary.- On the Endomorphism Ring of a Discrete Module: A Theorem of F. Kasch.- Nonsingular Rings with Finite Type Dimension.
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations. Contents: Basic notation Preliminary results Hyperbolic equations Parabolic equations Use of exact difference schemes to construct NSFD discretizations of differential equations Exact and truncated difference schemes for boundary-value problem Exact difference schemes for stochastic differential equations Numerical blow-up time Bibliography
On Convex Combinations of Unitary Operators in C*-Algebras.- Approximately Inner Derivations, Decompositions and Vector Fields of Simple C*-Algebras.- Derivations in Commutative C*-Algebras.- Representation of Quantum Groups.- Automorphism Groups and Covariant Irreducible Representations.- Proper Actions of Groups on C*-Algebras.- On the Baum-Connes Conjecture.- On Primitive Ideal Spaces of C*-Algebras over Certain Locally Compact Groupoids.- On Sequences of Jones' Projections.- The Powers' Binary Shifts on the Hyperfinite Factor of Type II1.- Index Theory for Type III Factors.- Relative Entropy of a Fixed Point Algebra.- Jones Index Theory for C*-Algebras.- Three Tensor Norms for Operator Spaces.- Extension Problems for Maps on Operator Systems.- Multivariable Toeplitz Operators and Index Theory.- On Maximality of Analytic Subalgebras Associated with Flow in von Neumann Algebras.- Reflections Relating a von Neumann Algebra and Its Commutant.- Normal AW*-Algebras.
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
This book contains a collection of papers presented at the 2nd Tbilisi Salerno Workshop on Mathematical Modeling in March 2015. The focus is on applications of mathematics in physics, electromagnetics, biochemistry and botany, and covers such topics as multimodal logic, fractional calculus, special functions, Fourier-like solutions for PDE's, Rvachev-functions and linear dynamical systems. Special chapters focus on recent uniform analytic descriptions of natural and abstract shapes using the Gielis Formula. The book is intended for a wide audience with interest in application of mathematics to modeling in the natural sciences.
This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras. "Algebras, Quivers and Representations" is targeted at researchers and graduate students in algebra, representation theory and triangulate categories. "
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
In his 1974 seminal paper 'Elliptic modules', V G Drinfeld introduced objects into the arithmetic geometry of global function fields which are nowadays known as 'Drinfeld Modules'. They have many beautiful analogies with elliptic curves and abelian varieties. They study of their moduli spaces leads amongst others to explicit class field theory, Jacquet-Langlands theory, and a proof of the Shimura-Taniyama-Weil conjecture for global function fields.This book constitutes a carefully written instructional course of 12 lectures on these subjects, including many recent novel insights and examples. The instructional part is complemented by research papers centering around class field theory, modular forms and Heegner points in the theory of global function fields.The book will be indispensable for everyone who wants a clear view of Drinfeld's original work, and wants to be informed about the present state of research in the theory of arithmetic geometry over function fields.
The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. "Syzygies and Homotopy Theory" explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples "F""n"" "F where "F""n "is a free group of rank "n" and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares. The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. "Syzygies and Homotopy Theory "will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology."
This work deals with the matrix methods of continuous signal and image processing according to which strip-transformation is used. The authors suggest ways to solve a problem of evaluating potential noise immunity and synthesis of an optimal filter for the case of pulse noises, of applying the two-dimensional strip-transformation for storage and noise immune transmission of images. The strip-transformation of images is illustrated by examples and classes of images invariant relative to symmetrical orthogonal transformations. The monograph is intended for scientists and specialists whose activities are connected with computer signals and images processing, instrumentation and metrology. It can also be used by undergraduates, as well as by post-graduates for studying computer methods of signal and image processing.
This volume presents five surveys with extensive bibliographies and six original contributions on set optimization and its applications in mathematical finance and game theory. The topics range from more conventional approaches that look for minimal/maximal elements with respect to vector orders or set relations, to the new complete-lattice approach that comprises a coherent solution concept for set optimization problems, along with existence results, duality theorems, optimality conditions, variational inequalities and theoretical foundations for algorithms. Modern approaches to scalarization methods can be found as well as a fundamental contribution to conditional analysis. The theory is tailor-made for financial applications, in particular risk evaluation and [super-]hedging for market models with transaction costs, but it also provides a refreshing new perspective on vector optimization. There is no comparable volume on the market, making the book an invaluable resource for researchers working in vector optimization and multi-criteria decision-making, mathematical finance and economics as well as [set-valued] variational analysis.
This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)." The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on tale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples' Friendship University of Russia in Moscow on August 22-27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
Recent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices. Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all. Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.
This book presents material from 3 survey lectures and 14 additional invited lectures given at the Euroconference "Computational Methods for Representations of Groups and Algebras" held at Essen University in April 1997. The purpose of this meeting was to provide a survey of general theoretical and computational methods and recent advances in the representation theory of groups and algebras. The foundations of these research areas were laid in survey articles by P. DrAxler and R. NArenberg on "Classification problems in the representation theory of finite-dimensional algebras," R. A. Wilson on "Construction of finite matrix groups" and E. Green on "Noncommutative GrAbner bases, and projective resolutions." Furthermore, new applications of the computational methods in linear algebra to the revision of the classification of finite simple sporadic groups are presented. Computational tools (including high-performance computations on supercomputers) have become increasingly important for classification problems. They are also inevitable for the construction of projective resolutions of finitely generated modules over finite-dimensional algebras and the study of group cohomology and rings of invariants. A major part of this book is devoted to a survey of algorithms for computing special examples in the study of Grothendieck groups, quadratic forms and derived categories of finite-dimensional algebras. Open questions on Lie algebras, Bruhat orders, Coxeter groups and Kazhdan Lusztig polynomials are investigated with the aid of computer programs. The contents of this book provide an overview on the present state of the art. Therefore it will be very useful for graduate students and researchers in mathematics, computer science and physics.
This book consists of invited survey articles and research papers in the scientific areas of the "International Workshop on Operator Algebras, Operator Theory and Applications," which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie. |
![]() ![]() You may like...
Interaction Between Compilers and…
Gyungho Lee, Pen-Chung Yew
Hardcover
R2,963
Discovery Miles 29 630
A Programmer's Guide to ADO.NET in C#
Mahesh Chand, Mike Gold
Paperback
Implementation of Functional Languages…
Pieter Koopman, Chris Clack
Paperback
R1,568
Discovery Miles 15 680
|