![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This book collects and coherently presents the research that has been undertaken since the author's previous book Module Theory (1998). In addition to some of the key results since 1995, it also discusses the development of much of the supporting material. In the twenty years following the publication of the Camps-Dicks theorem, the work of Facchini, Herbera, Shamsuddin, Puninski, Prihoda and others has established the study of serial modules and modules with semilocal endomorphism rings as one of the promising directions for module-theoretic research. Providing readers with insights into the directions in which the research in this field is moving, as well as a better understanding of how it interacts with other research areas, the book appeals to undergraduates and graduate students as well as researchers interested in algebra.
This volume resulted from presentations given at the international "Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", that took place at the Instituto de Ciencias Matematicas (ICMAT) in Madrid, Spain. It combines overview and research articles on recent and ongoing developments, as well as new research directions. Why geometric numerical integration? In their article of the same title Arieh Iserles and Reinout Quispel, two renowned experts in numerical analysis of differential equations, provide a compelling answer to this question. After this introductory chapter a collection of high-quality research articles aim at exploring recent and ongoing developments, as well as new research directions in the areas of geometric integration methods for differential equations, nonlinear systems interconnections, and discrete mechanics. One of the highlights is the unfolding of modern algebraic and combinatorial structures common to those topics, which give rise to fruitful interactions between theoretical as well as applied and computational perspectives. The volume is aimed at researchers and graduate students interested in theoretical and computational problems in geometric integration theory, nonlinear control theory, and discrete mechanics.
This book gathers selected contributions presented at the INdAM Meeting Structured Matrices in Numerical Linear Algebra: Analysis, Algorithms and Applications, held in Cortona, Italy on September 4-8, 2017. Highlights cutting-edge research on Structured Matrix Analysis, it covers theoretical issues, computational aspects, and applications alike. The contributions, written by authors from the foremost international groups in the community, trace the main research lines and treat the main problems of current interest in this field. The book offers a valuable resource for all scholars who are interested in this topic, including researchers, PhD students and post-docs.
This book introduces the fundamental concepts, methods, and applications of Hausdorff calculus, with a focus on its applications in fractal systems. Topics such as the Hausdorff diffusion equation, Hausdorff radial basis function, Hausdorff derivative nonlinear systems, PDE modeling, statistics on fractals, etc. are discussed in detail. It is an essential reference for researchers in mathematics, physics, geomechanics, and mechanics.
Reliability is one of the fundamental criteria in engineering systems. Design and maintenance serve to support it throughout the systems life. As such, maintenance acts in parallel to production and can have a great impact on the availability and capacity of production and the quality of the products. The authors describe current and innovative methods useful to industry and society.
The main reason I write this book was just to fullfil my long time dream to be able to tutor students. Most students do not bring their text books at home from school. This makes it difficult to help them. This book may help such students as this can be used as a reference in understanding Algebra and Geometry.
This volume contains research papers and surveys reflecting the topics discussed at the EMS Summer School on Multigraded Algebra and Applications held in Romania in August 2016. The school, which served as the 24th National School on Algebra, presented the main research directions of combinatorial commutative algebra with a strong focus on its applications in combinatorics, statistics, and biology. Recent progress in the field has led to new insights and suggested algebraic techniques for solving real-world data analysis problems. The summer school and resulting proceedings volume have raised numerous novel questions and encouraged a more interdisciplinary approach for young researchers when considering problems in pure and applied mathematical research. Featured topics in this volume include toric rings, binomial edge ideals, Betti numbers for numerical semigroup rings, and Waldschmidt constants. Researchers and graduate students interested in the developments of the field will find this book useful for their studies.
This book provides a comprehensive exposition of the use of set-theoretic methods in abelian group theory, module theory, and homological algebra, including applications to Whitehead's Problem, the structure of Ext and the existence of almost-free modules over non-perfect rings. This second edition is completely revised and udated to include major developments in the decade since the first edition. Among these are applications to cotorsion theories and covers, including a proof of the Flat Cover Conjecture, as well as the use of Shelah's pcf theory to constuct almost free groups. As with the first edition, the book is largely self-contained, and designed to be accessible to both graduate students and researchers in both algebra and logic. They will find there an introduction to powerful techniques which they may find useful in their own work.
For courses in Linear Algebra. Fosters the concepts and skillsneeded for future careers Linear Algebra and ItsApplications offers a modern elementary introduction with broad, relevantapplications. With traditional texts, the early stages of the course arerelatively easy as material is presented in a familiar, concrete setting, butstudents often hit a wall when abstract concepts are introduced. Certainconcepts fundamental to the study of linear algebra (such as linearindependence, vector space, and linear transformations) require time toassimilate - and students' understanding of them is vital. Lay, Lay, and McDonald make theseconcepts more accessible by introducing them early in a familiar, concrete n setting, developing them gradually, and returning to themthroughout the text so that students can grasp them when they are discussed inthe abstract. The 6th Edition offers exciting new material, examples,and online resources, along with new topics, vignettes, and applications.
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find their place into a monograph till now, mainly because they are very new. So, the book, although containing the main parts of the classical theory of Co-semigroups, as the Hille-Yosida theory, includes also several very new results, as for instance those referring to various classes of semigroups such as equicontinuous, compact, differentiable, or analytic, as well as to some nonstandard types of partial differential equations, i.e. elliptic and parabolic systems with dynamic boundary conditions, and linear or semilinear differential equations with distributed (time, spatial) measures. Moreover, some finite-dimensional-like methods for certain semilinear pseudo-parabolic, or hyperbolic equations are also disscussed. Among the most interesting applications covered are not only the standard ones concerning the Laplace equation subject to either Dirichlet, or Neumann boundary conditions, or the Wave, or Klein-Gordon equations, but also those referring to the Maxwell equations, the equations of Linear Thermoelasticity, the equations of Linear Viscoelasticity, to list only a few. Moreover, each chapter contains a set of various problems, all of them completely solved and explained in a special section at the end of the book.
This comprehensive text shows how various notions of logic can be viewed as notions of universal algebra providing more advanced concepts for those who have an introductory knowledge of algebraic logic, as well as those wishing to delve into more theoretical aspects.
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schroedinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
This proceedings volume documents the contributions presented at the conference held at Fairfield University and at the Graduate Center, CUNY in 2018 celebrating the New York Group Theory Seminar, in memoriam Gilbert Baumslag, and to honor Benjamin Fine and Anthony Gaglione. It includes several expert contributions by leading figures in the group theory community and provides a valuable source of information on recent research developments.
This book presents, in a uniform way, several problems in applied mechanics, which are analysed using the matrix theory and the properties of eigenvalues and eigenvectors. It reveals that various problems and studies in mechanical engineering produce certain patterns that can be treated in a similar way. Accordingly, the same mathematical apparatus allows us to study not only mathematical structures such as quadratic forms, but also mechanics problems such as multibody rigid mechanics, continuum mechanics, vibrations, elastic and dynamic stability, and dynamic systems. In addition, the book explores a wealth of engineering applications.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
This updated edition of a classic title studies identical relations in Lie algebras and also in other classes of algebras, a theory with over 40 years of development in which new methods and connections with other areas of mathematics have arisen. New topics covered include graded identities, identities of algebras with actions and coactions of various Hopf algebras, and the representation theory of the symmetric and general linear group.
Based on the 4th Seminar on Algebra and its Applications organized by the University of Mohaghegh Ardabili, this volume highlights recent developments and trends in algebra and its applications. Selected and peer reviewed, the contributions in this volume cover areas that have flourished in the last few decades, including homological algebra, combinatorial algebra, module theory and linear algebra over rings, multiplicative ideal theory, and integer-valued polynomials. Held biennially since 2010, SAA introduces Iranian faculty and graduate students to important ideas in the mainstream of algebra and opens channels of communication between Iranian mathematicians and algebraists from around the globe to facilitate collaborative research. Ideal for graduate students and researchers in the field, these proceedings present the best of the seminar's research achievements and new contributions to the field.
|
You may like...
Graph Separators, with Applications
Arnold L. Rosenberg, Lenwood S. Heath
Hardcover
R2,794
Discovery Miles 27 940
Applied Evolutionary Algorithms in Java
Robert Ghanea-Hercock
Hardcover
R2,666
Discovery Miles 26 660
Algorithmic Learning in a Random World
Vladimir Vovk, Alex Gammerman, …
Hardcover
R4,702
Discovery Miles 47 020
Constraint Programming and Decision…
Martine Ceberio, Vladik Kreinovich
Hardcover
R3,182
Discovery Miles 31 820
Policies and Research in Identity…
Elisabeth De Leeuw, Simone Fischer-Hubner, …
Hardcover
R1,402
Discovery Miles 14 020
|