![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
ELEMENTARY LINEAR ALGEBRA, 8E, INTERNATIONAL METRIC EDITION's clear, careful, and concise presentation of material helps you fully understand how mathematics works. The author balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system. To engage you in the material, a new design highlights the relevance of the mathematics and makes the book easier to read. Data and applications reflect current statistics and examples, demonstrating the link between theory and practice. The companion website LarsonLinearAlgebra.com offers free access to multiple study tools and resources. CalcChat.com offers free step-by-step solutions to the odd-numbered exercises in the text.
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ? ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
Identity Based Encryption (IBE) is a type of public key encryption and has been intensely researched in the past decade. Identity-Based Encryption summarizes the available research for IBE and the main ideas that would enable users to pursue further work in this area. This book will also cover a brief background on Elliptic Curves and Pairings, security against chosen Cipher text Attacks, standards and more. Advanced-level students in computer science and mathematics who specialize in cryptology, and the general community of researchers in the area of cryptology and data security will find Identity-Based Encryption a useful book. Practitioners and engineers who work with real-world IBE schemes and need a proper understanding of the basic IBE techniques, will also find this book a valuable asset.
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.
A complete study on an important class of linear dynamical systems-positive linear systems One of the most often-encountered systems in nearly all areas of science and technology, positive linear systems is a specific but remarkable and fascinating class. Renowned scientists Lorenzo Farina and Sergio Rinaldi introduce readers to the world of positive linear systems in their rigorous but highly accessible book, rich in applications, examples, and figures. This professional reference is divided into three main parts: The first part contains the definitions and basic properties of positive linear systems. The second part, following the theoretical exposition, reports the main conceptual results, considering applicable examples taken from a number of widely used models. The third part is devoted to the study of some classes of positive linear systems of particular relevance in applications (such as the Leontief model, the Leslie model, the Markov chains, the compartmental systems, and the queueing systems). Readers familiar with linear algebra and linear systems theory will appreciate the way arguments are treated and presented. Extraordinarily comprehensive, Positive Linear Systems features:
Farina and Rinaldi make no effort to hide their enthusiasm for the topics presented, making Positive Linear Systems: Theory andApplications an indispensable resource for researchers and professionals in a broad range of fields.
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
This volume is a collection of chapters covering recent advances
in stochastic optimal control theory and algebraic systems theory.
The book will be a useful reference for researchers and graduate
students in systems and control, algebraic systems theory, and
applied mathematics. Requiring only knowledge of
undergraduate-level control and systems theory, the work may be
used as a supplementary textbook in a graduate course on optimal
control or algebraic systems theory.
The main focus of this thesis is the mathematical structure of Group Field Theories (GFTs) from the point of view of renormalization theory. Such quantum field theories are found in approaches to quantum gravity related, on the one hand, to Loop Quantum Gravity (LQG) and on the other, to matrix- and tensor models. Background material on these topics, including conceptual and technical aspects, are introduced in the first chapters. The work then goes on to explain how the standard tools of Quantum Field Theory can be generalized to GFTs and exploited to study the large cut-off behaviour and renormalization group transformations of the latter. Among the new results derived in this context are a proof of renormalizability of a three-dimensional GFT with gauge group SU(2), which opens the way to applications of the formalism to quantum gravity.
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22-26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prufer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
Traditionally, Lie Theory is a tool to build mathematical models
for physical systems. Recently, the trend is towards geometrisation
of the mathematical description of physical systems and objects. A
geometric approach to a system yields in general some notion of
symmetry which is very helpful in understanding its structure.
Geometrisation and symmetries are meant in their broadest sense,
i.e., classical geometry, differential geometry, groups and quantum
groups, infinite-dimensional (super-)algebras, and their
representations. Furthermore, we include the necessary tools from
functional analysis and number theory. This is a large
interdisciplinary and interrelated field.
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
The book offers a new approach to information theory that is more general then the classical approach by Shannon. The classical definition of information is given for an alphabet of symbols or for a set of mutually exclusive propositions (a partition of the probability space ) with corresponding probabilities adding up to 1. The new definition is given for an arbitrary cover of , i.e. for a set of possibly overlapping propositions. The generalized information concept is called novelty and it is accompanied by two new concepts derived from it, designated as information and surprise, which describe "opposite" versions of novelty, information being related more to classical information theory and surprise being related more to the classical concept of statistical significance. In the discussion of these three concepts and their interrelations several properties or classes of covers are defined, which turn out to be lattices. The book also presents applications of these new concepts, mostly in statistics and in neuroscience.
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: * Dunford decomposition, * tensor and exterior calculus, polynomial identities, * regularity of eigenvalues for complex matrices, * functional calculus and the Dunford-Taylor formula, * numerical range, * Weyl's and von Neumann's inequalities, and * Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Superieure de Lyon.
This book features a selection of articles based on the XXXIV Bialowieza Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch's most important and lasting achievements in mathematical physics. The Bialowieza workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bialowieza Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bialowieza forest in eastern Poland.
The material collected in this book originated from lectures given by authors over many years in Warsaw, Trieste, Schladming, Istanbul, Goteborg and Boulder. There is no other comparable book on group representations, neither in mathematical nor in physical literature and it is hoped that this book will prove to be useful in many areas of research. It is highly recommended as a textbook for an advanced course in mathematical physics on Lie algebras, Lie groups and their representations.
Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang-Mills theory, are derived in detail using illustrative examples. Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide.
"A Concrete Approach to Abstract Algebra"begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students.The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, precalculus and calculus. The final four chapters presentthe more theoretical material needed for graduate study. Ancillary list: * Online ISM- http:
//textbooks.elsevier.com/web/manuals.aspx?isbn=9780123749413 *
Online SSM- http:
//www.elsevierdirect.com/product.jsp?isbn=9780123749413 * Ebook-
http: //www.elsevierdirect.com/product.jsp?isbn=9780123749413 "
This book discusses recent developments and the latest research in algebra and related topics. The book allows aspiring researchers to update their understanding of prime rings, generalized derivations, generalized semiderivations, regular semigroups, completely simple semigroups, module hulls, injective hulls, Baer modules, extending modules, local cohomology modules, orthogonal lattices, Banach algebras, multilinear polynomials, fuzzy ideals, Laurent power series, and Hilbert functions. All the contributing authors are leading international academicians and researchers in their respective fields. Most of the papers were presented at the international conference on Algebra and its Applications (ICAA-2014), held at Aligarh Muslim University, India, from December 15-17, 2014. The book also includes papers from mathematicians who couldn't attend the conference. The conference has emerged as a powerful forum offering researchers a venue to meet and discuss advances in algebra and its applications, inspiring further research directions.
This book addresses college students' weak foundation in algebra, its causes, and potential solutions to improve their long-term success and understanding in mathematics as a whole. The authors, who are experts in a wide variety of fields, emphasize that these difficulties are more complex than just forgotten rules, and offer strategic approaches from a number of angles that will increase the chances of student understanding. Instructors who are frustrated with their students' lack of skills and knowledge at college level will find this volume helpful, as the authors confront the deeper reasons why students have difficulties with Algebra and reveal how to remedy the issue.
This book is intended as an introduction to fuzzy algebraic hyperstructures. As the first in its genre, it includes a number of topics, most of which reflect the authors' past research and thus provides a starting point for future research directions. The book is organized in five chapters. The first chapter introduces readers to the basic notions of algebraic structures and hyperstructures. The second covers fuzzy sets, fuzzy groups and fuzzy polygroups. The following two chapters are concerned with the theory of fuzzy Hv-structures: while the third chapter presents the concept of fuzzy Hv-subgroup of Hv-groups, the fourth covers the theory of fuzzy Hv-ideals of Hv-rings. The final chapter discusses several connections between hypergroups and fuzzy sets, and includes a study on the association between hypergroupoids and fuzzy sets endowed with two membership functions. In addition to providing a reference guide to researchers, the book is also intended as textbook for undergraduate and graduate students.
This book treats modal logic as a theory, with several subtheories,
such as completeness theory, correspondence theory, duality theory
and transfer theory and is intended as a course in modal logic for
students who have had prior contact with modal logic and who wish
to study it more deeply. It presupposes training in mathematical or
logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book.
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
The theme of the first Abel Symposium was operator algebras in a wide sense. In the last 40 years operator algebras have developed from a rather special discipline within functional analysis to become a central field in mathematics often described as "non-commutative geometry." It has branched out in several sub-disciplines and made contact with other subjects. The contributions to this volume give a state-of-the-art account of some of these sub-disciplines and the variety of topics reflect to some extent how the subject has developed. This is the first volume in a prestigious new book series linked to the Abel prize.
Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics. |
You may like...
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
View of Sir Isaac Newton's Philosophy
Henry 1694-1771 Pemberton
Hardcover
R1,017
Discovery Miles 10 170
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,089
Discovery Miles 30 890
|