|
|
Books > Science & Mathematics > Mathematics > Algebra
Algebraic and Combinatorial Computational Biology introduces
students and researchers to a panorama of powerful and current
methods for mathematical problem-solving in modern computational
biology. Presented in a modular format, each topic introduces the
biological foundations of the field, covers specialized
mathematical theory, and concludes by highlighting connections with
ongoing research, particularly open questions. The work addresses
problems from gene regulation, neuroscience, phylogenetics,
molecular networks, assembly and folding of biomolecular
structures, and the use of clustering methods in biology. A number
of these chapters are surveys of new topics that have not been
previously compiled into one unified source. These topics were
selected because they highlight the use of technique from algebra
and combinatorics that are becoming mainstream in the life
sciences.
This book is the second of a three-volume set of books on the
theory of algebras, a study that provides a consistent framework
for understanding algebraic systems, including groups, rings,
modules, semigroups and lattices. Volume I, first published in the
1980s, built the foundations of the theory and is considered to be
a classic in this field. The long-awaited volumes II and III are
now available. Taken together, the three volumes provide a
comprehensive picture of the state of art in general algebra today,
and serve as a valuable resource for anyone working in the general
theory of algebraic systems or in related fields. The two new
volumes are arranged around six themes first introduced in Volume
I. Volume II covers the Classification of Varieties, Equational
Logic, and Rudiments of Model Theory, and Volume III covers Finite
Algebras and their Clones, Abstract Clone Theory, and the
Commutator. These topics are presented in six chapters with
independent expositions, but are linked by themes and motifs that
run through all three volumes.
Factorization Method for Boundary Value Problems by Invariant
Embedding presents a new theory for linear elliptic boundary value
problems. The authors provide a transformation of the problem in
two initial value problems that are uncoupled, enabling you to
solve these successively. This method appears similar to the Gauss
block factorization of the matrix, obtained in finite dimension
after discretization of the problem. This proposed method is
comparable to the computation of optimal feedbacks for linear
quadratic control problems.
|
You may like...
The Slavonic Languages
Professor Greville Corbett, Professor Bernard Comrie
Hardcover
R10,117
Discovery Miles 101 170
|