![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. This volume is devoted specifically to the mathematical aspects of Clifford algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, "q"-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
The book provides a state-of-art overview of computational methods for nonlinear aeroelasticity and load analysis, focusing on key techniques and fundamental principles for CFD/CSD coupling in temporal domain. CFD/CSD coupling software design and applications of CFD/CSD coupling techniques are discussed in detail as well. It is an essential reference for researchers and students in mechanics and applied mathematics.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, exterior algebras, central simple algebras, and Brauer groups. The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfuly used this text to teach algebra to first year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year.
This monograph studies optimization problems for rigid punches in elastic media and for high-speed penetration of rigid strikers into deformed elastoplastic, concrete, and composite media using variational calculations, tools from functional analysis, and stochastic and min-max (guaranteed) optimization approaches with incomplete data. The book presents analytical and numerical results developed by the authors during the last ten years.
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.
This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations .
This monograph introduces and explores the notions of a commutator equation and the equationally-defined commutator from the perspective of abstract algebraic logic. An account of the commutator operation associated with equational deductive systems is presented, with an emphasis placed on logical aspects of the commutator for equational systems determined by quasivarieties of algebras. The author discusses the general properties of the equationally-defined commutator, various centralization relations for relative congruences, the additivity and correspondence properties of the equationally-defined commutator and its behavior in finitely generated quasivarieties. Presenting new and original research not yet considered in the mathematical literature, The Equationally-Defined Commutator will be of interest to professional algebraists and logicians, as well as graduate students and other researchers interested in problems of modern algebraic logic.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. Contents Prerequisites The Schur-Zassenhaus theorem: A bit of history and motivation Abelian and minimal normal subgroups Reduction theorems Subgroups in the chief series, derived series, and lower nilpotent series Normal subgroups with abelian sylow subgroups The formation generation Groups with specific classes of subgroups complemented
The second edition of this book updates and expands upon a historically important collection of mathematical problems first published in the United States by Birkhauser in 1981. These problems serve as a record of the informal discussions held by a group of mathematicians at the Scottish Cafe in Lwow, Poland, between the two world wars. Many of them were leaders in the development of such areas as functional and real analysis, group theory, measure and set theory, probability, and topology. Finding solutions to the problems they proposed has been ongoing since World War II, with prizes offered in many cases to those who are successful. In the 35 years since the first edition published, several more problems have been fully or partially solved, but even today many still remain unsolved and several prizes remain unclaimed. In view of this, the editor has gathered new and updated commentaries on the original 193 problems. Some problems are solved for the first time in this edition. Included again in full are transcripts of lectures given by Stanislaw Ulam, Mark Kac, Antoni Zygmund, Paul Erdoes, and Andrzej Granas that provide amazing insights into the mathematical environment of Lwow before World War II and the development of The Scottish Book. Also new in this edition are a brief history of the University of Wroclaw's New Scottish Book, created to revive the tradition of the original, and some selected problems from it. The Scottish Book offers a unique opportunity to communicate with the people and ideas of a time and place that had an enormous influence on the development of mathematics and try their hand on the unsolved problems. Anyone in the general mathematical community with an interest in the history of modern mathematics will find this to be an insightful and fascinating read.
This book presents an exciting collection of contributions based on the workshop "Bringing Maths to Life" held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.
The book covers fundamentals of the theory of optimal methods for solving ill-posed problems, as well as ways to obtain accurate and accurate-by-order error estimates for these methods. The methods described in the current book are used to solve a number of inverse problems in mathematical physics. Contents Modulus of continuity of the inverse operator and methods for solving ill-posed problems Lavrent'ev methods for constructing approximate solutions of linear operator equations of the first kind Tikhonov regularization method Projection-regularization method Inverse heat exchange problems
Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms, which have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high-speed trains. The authors present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils, and highlight the use of these algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists. Graduate students may also find it of interest.
This is the first textbook on attribute exploration, its theory, its algorithms forapplications, and some of its many possible generalizations. Attribute explorationis useful for acquiring structured knowledge through an interactive process, byasking queries to an expert. Generalizations that handle incomplete, faulty, orimprecise data are discussed, but the focus lies on knowledge extraction from areliable information source.The method is based on Formal Concept Analysis, a mathematical theory ofconcepts and concept hierarchies, and uses its expressive diagrams. The presentationis self-contained. It provides an introduction to Formal Concept Analysiswith emphasis on its ability to derive algebraic structures from qualitative data,which can be represented in meaningful and precise graphics.
This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers: **"As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of nonexperts, mathematicians whose speciality is not ring theory, will find Ring Theory ideally suited to their needs....They, as well as students, will be well served by the many examples of rings and the glossary of major results."**--NOTICES OF THE AM
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
The goal of this book is to cover the active developments of arithmetically Cohen-Macaulay and Ulrich bundles and related topics in the last 30 years, and to present relevant techniques and multiple applications of the theory of Ulrich bundles to a wide range of problems in algebraic geometry as well as in commutative algebra.
This book is the first volume of an intensive "Russian-style" two-year graduate course in abstract algebra, and introduces readers to the basic algebraic structures - fields, rings, modules, algebras, groups, and categories - and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry - topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
This book is a comprehensive survey of matrix perturbation theory, a topic of interest to numerical analysts, statisticians, physical scientists, and engineers. In particular, the authors cover perturbation theory of linear systems and least square problems, the eignevalue problem, and the generalized eignevalue problem as wellas a complete treatment of vector and matrix norms, including the theory of unitary invariant norms.
This volume contains contributions from 24 internationally known scholars covering a broad spectrum of interests in cross-cultural theory and research. This breadth is reflected in the diversity of the topics covered in the volume, which include theoretical approaches to cross-cultural research, the dimensions of national cultures and their measurement, ecological and economic foundations of culture, cognitive, perceptual and emotional manifestations of culture, and bicultural and intercultural processes. In addition to the individual chapters, the volume contains a dialog among 14 experts in the field on a number of issues of concern in cross-cultural research, including the relation of psychological studies of culture to national development and national policies, the relationship between macro structures of a society and shared cognitions, the integration of structural and process models into a coherent theory of culture, how personal experiences and cultural traditions give rise to intra-cultural variation, whether culture can be validly measured by self-reports, the new challenges that confront cultural psychology, and whether psychology should strive to eliminate culture as an explanatory variable. |
![]() ![]() You may like...
Handbook of Experimental Game Theory
C. M. Capra, Rachel T. A. Croson, …
Hardcover
R6,736
Discovery Miles 67 360
Applications of Multi-Criteria and Game…
Lyes Benyoucef, Jean-CLaude Hennet, …
Hardcover
R5,133
Discovery Miles 51 330
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,905
Discovery Miles 89 050
The Cooperative Enterprise - Practical…
Gert van Dijk, Panagiota Sergaki, …
Hardcover
R3,894
Discovery Miles 38 940
Hazardous Forecasts and Crisis Scenario…
Arnaud Clement-Grandcourt, Herve Fraysse
Hardcover
Multilevel Strategic Interaction Game…
Eitan Altman, Konstantin Avrachenkov, …
Hardcover
R3,160
Discovery Miles 31 600
Game Theory and Networks - New…
Surajit Borkotokey, Rajnish Kumar, …
Hardcover
R4,255
Discovery Miles 42 550
|