![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
"A Concrete Approach to Abstract Algebra"begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students.The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, precalculus and calculus. The final four chapters presentthe more theoretical material needed for graduate study. Ancillary list: * Online ISM- http:
//textbooks.elsevier.com/web/manuals.aspx?isbn=9780123749413 *
Online SSM- http:
//www.elsevierdirect.com/product.jsp?isbn=9780123749413 * Ebook-
http: //www.elsevierdirect.com/product.jsp?isbn=9780123749413 "
This book discusses recent developments and the latest research in algebra and related topics. The book allows aspiring researchers to update their understanding of prime rings, generalized derivations, generalized semiderivations, regular semigroups, completely simple semigroups, module hulls, injective hulls, Baer modules, extending modules, local cohomology modules, orthogonal lattices, Banach algebras, multilinear polynomials, fuzzy ideals, Laurent power series, and Hilbert functions. All the contributing authors are leading international academicians and researchers in their respective fields. Most of the papers were presented at the international conference on Algebra and its Applications (ICAA-2014), held at Aligarh Muslim University, India, from December 15-17, 2014. The book also includes papers from mathematicians who couldn't attend the conference. The conference has emerged as a powerful forum offering researchers a venue to meet and discuss advances in algebra and its applications, inspiring further research directions.
Traditionally, Lie Theory is a tool to build mathematical models
for physical systems. Recently, the trend is towards geometrisation
of the mathematical description of physical systems and objects. A
geometric approach to a system yields in general some notion of
symmetry which is very helpful in understanding its structure.
Geometrisation and symmetries are meant in their broadest sense,
i.e., classical geometry, differential geometry, groups and quantum
groups, infinite-dimensional (super-)algebras, and their
representations. Furthermore, we include the necessary tools from
functional analysis and number theory. This is a large
interdisciplinary and interrelated field.
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.
This book is intended as an introduction to fuzzy algebraic hyperstructures. As the first in its genre, it includes a number of topics, most of which reflect the authors' past research and thus provides a starting point for future research directions. The book is organized in five chapters. The first chapter introduces readers to the basic notions of algebraic structures and hyperstructures. The second covers fuzzy sets, fuzzy groups and fuzzy polygroups. The following two chapters are concerned with the theory of fuzzy Hv-structures: while the third chapter presents the concept of fuzzy Hv-subgroup of Hv-groups, the fourth covers the theory of fuzzy Hv-ideals of Hv-rings. The final chapter discusses several connections between hypergroups and fuzzy sets, and includes a study on the association between hypergroupoids and fuzzy sets endowed with two membership functions. In addition to providing a reference guide to researchers, the book is also intended as textbook for undergraduate and graduate students.
This book treats modal logic as a theory, with several subtheories,
such as completeness theory, correspondence theory, duality theory
and transfer theory and is intended as a course in modal logic for
students who have had prior contact with modal logic and who wish
to study it more deeply. It presupposes training in mathematical or
logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book.
Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics.
Systemics of Emergence: Research and Development is a volume devoted to exploring the core theoretical and disciplinary research problems of emergence processes from which systems are established. It focuses on emergence as the key point of any systemic process. This topic is dealt with within different disciplinary approaches, indicated by the organization in sections: 1) Applications; 2) Biology and human care; 3) Cognitive Science; 4) Emergence; 5) General Systems; 6) Learning; 7) Management; 8) Social Systems; 9) Systemic Approach and Information Science; 10) Theoretical issues in Systemics. The Editors and contributing authors have produced this volume to help, encourage and widen the work in this area of General Systems Research.
This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout."
The theme of the first Abel Symposium was operator algebras in a wide sense. In the last 40 years operator algebras have developed from a rather special discipline within functional analysis to become a central field in mathematics often described as "non-commutative geometry." It has branched out in several sub-disciplines and made contact with other subjects. The contributions to this volume give a state-of-the-art account of some of these sub-disciplines and the variety of topics reflect to some extent how the subject has developed. This is the first volume in a prestigious new book series linked to the Abel prize.
In this book, non-spectral methods are presented and discussed that have been developed over the last two decades for the investigation of asymptotic behavior of operator semigroups. This concerns in particular Markov semigroups in L1-spaces, motivated by applications to probability theory and dynamical systems. Recently many results on the asymptotic behaviour of Markov semigroups were extended to positive semigroups in Banach lattices with order-continuous norm, and to positive semigroups in non-commutative L1-spaces. Related results, historical notes, exercises, and open problems accompany each chapter.
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
This monograph is the first book-length treatment of valuation theory on finite-dimensional division algebras, a subject of active and substantial research over the last forty years. Its development was spurred in the last decades of the twentieth century by important advances such as Amitsur's construction of non crossed products and Platonov's solution of the Tannaka-Artin problem. This study is particularly timely because it approaches the subject from the perspective of associated graded structures. This new approach has been developed by the authors in the last few years and has significantly clarified the theory. Various constructions of division algebras are obtained as applications of the theory, such as noncrossed products and indecomposable algebras. In addition, the use of valuation theory in reduced Whitehead group calculations (after Hazrat and Wadsworth) and in essential dimension computations (after Baek and Merkurjev) is showcased. The intended audience consists of graduate students and research mathematicians.
The study of free resolutions is a core and beautiful area in Commutative Algebra. The main goal of this book is to inspire the readers and develop their intuition about syzygies and Hilbert functions. Many examples are given in order to illustrate ideas and key concepts. A valuable feature of the book is the inclusion of open problems and conjectures; these provide a glimpse of exciting, and often challenging, research directions in the field. Three types of problems are presented: Conjectures, Problems, and Open-Ended Problems. The latter do not describe specific problems but point to interesting directions for exploration. The first part of the monograph contains basic background material on graded free resolutions. Further coverage of topics includes syzygies over a polynomial ring, resolutions over quotient rings, lex ideals and Hilbert functions, compression, resolutions of monomial ideals, and syzygies of toric ideals. With a clear and self-contained exposition this text is intended for advanced graduate students and postdoctorates; it will be also of interest to senior mathematicians."
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.
This text is intended for a one or two semester sophomore level course in linear algebra. It is designed to provide a balance of applications, theory and computation, and to emphasize their interdependence. The text has a strong orientation towards numerical computation and the linear algebra needed in applied mathematics. At the same time, it contains a rigorous and self-contained development of most of the traditional topics in a linear algebra course. It provides background for numerous projects, which frequently require computational tools, but is not tied to any one computational platform. A comprehensive set of exercises and projects is included.
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
Mathematical algorithms are a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. This book provides a bridge between algebraic geometry and geometric modelling algorithms, formulated within a computer science framework. Apart from the algebraic geometry topics covered, the entire book is based on the unifying concept of using algebraic techniques - properly specialized to solve geometric problems - to seriously improve accuracy, robustness and efficiency of CAD-systems. It provides new approaches as well as industrial applications to deform surfaces when animating virtual characters, to automatically compare images of handwritten signatures and to improve control of NC machines. This book further introduces a noteworthy representation based on 2D contours, which is essential to model the metal sheet in industrial processes. It additionally reviews applications of numerical algebraic geometry to differential equations systems with multiple solutions and bifurcations. Future Vision and Trends on Shapes, Geometry and Algebra is aimed specialists in the area of mathematics and computer science on the one hand and on the other hand at those who want to become familiar with the practical application of algebraic geometry and geometric modelling such as students, researchers and doctorates.
In recent years there has been an explosion of research into linear programming, as well as further steady advances in integer programming. This research has been reported in the research literature but there has been little done from the view of a "combined whole". This book aims to overcome this. With an international authorship of contributors from acknowledged experts in their field, this book provides a clear exposition on such topics as simplex algorithms, and interior point algorithms, both from a theoretical and a computational viewpoint. Surveying recent research that is currently only available in journals this topical book will be of interest not only in the field of mathematics, but also in computer science and operations research as well.
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
area and in applications to linguistics, formal epistemology, and the study of norms. The second contains papers on non-classical and many-valued logics, with an eye on applications in computer science and through it to engineering. The third concerns the logic of belief management, whichis likewise closely connected with recent work in computer science but also links directly with epistemology, the philosophy of science, the study of legal and other normative systems, and cognitive science. The grouping is of course rough, for there are contributions to the volume that lie astride a boundary; at least one of them is relevant, from a very abstract perspective, to all three areas. We say a few words about each of the individual chapters, to relate them to each other and the general outlook of the volume. Modal Logics The ?rst bundle of papers in this volume contains contribution to modal logic. Three of them examine general problems that arise for all kinds of modal logics. The ?rst paper is essentially semantical in its approach, the second proof-theoretic, the third semantical again: Commutativity of quanti?ers in varying-domain Kripke models, by R. Goldblatt and I. Hodkinson, investigates the possibility of com- tation (i.e. reversing the order) for quanti?ers in ?rst-order modal logics interpreted over relational models with varying domains. The authors study a possible-worlds style structural model theory that does not v- idate commutation, but satis?es all the axioms originally presented by Kripke for his familiar semantics for ?rst-order modal logic."
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.
This book is composed of three survey lecture courses and some twenty invited research papers presented to WOAT 2006 - the International Summer School and Workshop on Operator Algebras, Operator Theory and Applications, which was held at Lisbon in September 2006. The volume reflects recent developments in the area of operator algebras and their interaction with research fields in complex analysis and operator theory. The lecture courses contain: an introduction to two classes of non-selfadjoint operator algebras, the generalized analytic Toeplitz algebras associated with the Fock space of a graph and subalgebras of graph C*-algebras; three topics on numerical functional analysis that are the cornerstones in asymptotic spectral theory: stability, fractality and Fredholmness; a survey concerning Hilbert spaces of holomorphic functions on Hermitian symmetric domains of arbitrary rank and dimension, in relation to operator theory, harmonic analysis and quantization. |
You may like...
Optimization and Control for Partial…
Roland Herzog, Matthias Heinkenschloss, …
Hardcover
R4,524
Discovery Miles 45 240
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Linear Algebra: Core Topics For The…
Dragu Atanasiu, Piotr Mikusinski
Hardcover
R2,845
Discovery Miles 28 450
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Elementary Treatise on Mechanics - for…
William G (William Guy) 1820- Peck
Hardcover
R887
Discovery Miles 8 870
|