![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Analytic geometry
This book consists essentially of a collection of papers that were contributed to a national meeting held in Houston, Texas, in 1983. The papers contained herein cover a wide range of electro- chemical engineering topics and should serve as useful starting points in the design of electrochemical cells. The editor would like to thank the authors for their contribu- tions and patience and the typists, Mrs. Susan 'Firth and Mrs. Jeri Saulsbury, for their efforts. Also, the editor would like to thank Mr. T. Nguyen and Ms. M. A. Nictrolson for their help in preparing the index of this book. R. E. White v CONTENTS Design and Development of Electrochemical Chlor-Alkali Cells * * * * * * * * * 1 S. N. Chatterjee A Simple Model of a Diaphragm - Type Chlorine Cell 25 R. E. White, J. S. Beckerdite, and J. Van Zee Design Principles for Chlorine Membrane Cells 61 K. H. Simmrock Hydroxyl Ion Migration, Chemical Reactions, Water Transport and Other Effects as Optimizing Parameters in Cross-, Co- and Countercurrently Operated Membrane Cells for the Chlor/Alkali Electrolysis . *******. **** 89 K. H. Simmrock Hydraulic Modelling as an Aid to Electrochemical Cell Design. 115 I. Wardle Calculating Mechanical Component Voltage Drops in 123 Electrochemical Cells * * * * I. Wardle Electrolysis Cell Design for Ion Exchange Membrane Chlor-Alkali Process * * * * * * * * * * * * 135 M. Seko, A. Yomiyama, and S.
The selective combination of physical, biochemical, and immunological prin ciples, along with new knowledge concerning the biology of cells and advance ments in engineering and computer sciences, has made possible the emergence of highly sophisticated and powerful methods for the analysis of cells and their constituents. This series on Cell Analysis is, therefore, aiming at providing the theoretical and practical background on how these methods work and what kind of information can be obtained. Cell Analysis will cover techniques on cell separation, cell identification and classification, characterization of orga nized cellular components, functional properties of cells, and cell interactions. Applications in cell biology, immunology, genetics, toxicology, specific diseases, diagnostics and therapeutics, and other areas will be covered whenever relevant results exist. Nicholas Catsimpoolas Boston, Massachusetts vii Contents Chapter I Quantification of Red Blood Cell Morphology James W. Bacus I. History .. II. Details of Red Cell Measurements. 3 III. Cell Sample Population Distributions. 11 IV. Discussion and Summary. 25 References. 30 Chapter 2 Laser Microirradiation and Computer Video Optical Microscopy in Cell Analysis Michael W. Berns and Robert J. Walter I. Introduction 33 II. Laser Microbeams 34 III. Computer-Enhanced Video Microscopy for Laser Microsurgery."
The present monograph is motivated by two distinct aims. Firstly, an endeavour has been made to furnish a reasonably comprehensive account of the theory of Finsler spaces based on the methods of classical differential geometry. Secondly, it is hoped that this monograph may serve also as an introduction to a branch of differential geometry which is closely related to various topics in theoretical physics, notably analytical dynamics and geometrical optics. With this second object in mind, an attempt has been made to describe the basic aspects of the theory in some detail - even at the expense of conciseness - while in the more specialised sections of the later chapters, which might be of interest chiefly to the specialist, a more succinct style has been adopted. The fact that there exist several fundamentally different points of view with regard to Finsler geometry has rendered the task of writing a coherent account a rather difficult one. This remark is relevant not only to the development of the subject on the basis of the tensor calculus, but is applicable in an even wider sense. The extensive work of H. BUSEMANN has opened up new avenues of approach to Finsler geometry which are independent of the methods of classical tensor analysis. In the latter sense, therefore, a full description of this approach does not fall within the scope of this treatise, although its fundamental l significance cannot be doubted.
Topology as a subject, in our opinion, plays a central role in university education. It is not really possible to design courses in differential geometry, mathematical analysis, differential equations, mechanics, functional analysis that correspond to the temporary state of these disciplines without involving topological concepts. Therefore, it is essential to acquaint students with topo logical research methods already in the first university courses. This textbook is one possible version of an introductory course in topo logy and elements of differential geometry, and it absolutely reflects both the authors' personal preferences and experience as lecturers and researchers. It deals with those areas of topology and geometry that are most closely related to fundamental courses in general mathematics. The educational material leaves a lecturer a free choice in designing his own course or his own seminar. We draw attention to a number of particularities in our book. The first chap ter, according to the authors' intention, should acquaint readers with topolo gical problems and concepts which arise from problems in geometry, analysis, and physics. Here, general topology (Ch. 2) is presented by introducing con structions, for example, related to the concept of quotient spaces, much earlier than various other notions of general topology thus making it possible for students to study important examples of manifolds (two-dimensional surfaces, projective spaces, orbit spaces, etc.) as topological spaces, immediately."
General equilibrium In this book we try to cope with the challenging task of reviewing the so called general equilibrium model and of discussing one specific aspect of the approach underlying it, namely, market completeness. With the denomination "general equilibrium" (from now on in short GE) we shall mainly refer to two different things. On one hand, in particular when using the expression "GE approach", we shall refer to a long established methodolog ical tradition in building and developing economic models, which includes, as of today, an enormous amount of contributions, ranging in number by several 1 thousands * On the other hand, in particular when using the expression "stan dard differentiable GE model", we refer to a very specific version of economic model of exchange and production, to be presented in Chapters 8 and 9, and to be modified in Chapters 10 to 15. Such a version is certainly formulated within the GE approach, but it is generated by making several quite restrictive 2 assumptions * Even to list and review very shortly all the collective work which can be ascribed to the GE approach would be a formidable task for several coauthors in a lifetime perspective. The book instead intends to address just a single issue. Before providing an illustration of its main topic, we feel the obligation to say a word on the controversial character of GE. First of all, we should say that we identify the GE approach as being based 3 on three principles .
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
This book is dedicated to the theory of continuous selections of multi valued mappings, a classical area of mathematics (as far as the formulation of its fundamental problems and methods of solutions are concerned) as well as 'J-n area which has been intensively developing in recent decades and has found various applications in general topology, theory of absolute retracts and infinite-dimensional manifolds, geometric topology, fixed-point theory, functional and convex analysis, game theory, mathematical economics, and other branches of modern mathematics. The fundamental results in this the ory were laid down in the mid 1950's by E. Michael. The book consists of (relatively independent) three parts - Part A: Theory, Part B: Results, and Part C: Applications. (We shall refer to these parts simply by their names). The target audience for the first part are students of mathematics (in their senior year or in their first year of graduate school) who wish to get familiar with the foundations of this theory. The goal of the second part is to give a comprehensive survey of the existing results on continuous selections of multivalued mappings. It is intended for specialists in this area as well as for those who have mastered the material of the first part of the book. In the third part we present important examples of applications of continuous selections. We have chosen examples which are sufficiently interesting and have played in some sense key role in the corresponding areas of mathematics."
This book presents a comprehensive, encyclopedic approach to the subject of foliations, one of the major concepts of modern geometry and topology. It addresses graduate students and researchers and serves as a reference book for experts in the field.
This book is an introduction to current research on the N- vortex problem of fluid mechanics. Its goal is to describe the Hamiltonian aspects of vortex dynamics so that graduate students and researchers can use the book as an entry point into the rather large literature on integrable and non-integrable vortex problems within the broader context of dynamical systems. It is as self-contained as possible: the only training required of the reader is a good background in advanced calculus and ordinary and partial differential equations at the level of a typical undergraduate engineering, physics, or applied mathematics major. Exercises of varying difficulty are found at the end of each chapter which often require the reader to fill in details of proofs or complete examples.
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.
This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.
Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder
After some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected. There, to first approximation, one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes. Ingredients of this approach are the formulation of quantum physics in terms of C*-algebras, the geometry of Lorentzian manifolds, in particular their causal structure, and linear hyperbolic differential equations where the well-posedness of the Cauchy problem plays a distinguished role, as well as more recently the insights from suitable concepts such as microlocal analysis. This primer is an outgrowth of a compact course given by the editors and contributing authors to an audience of advanced graduate students and young researchers in the field, and assumes working knowledge of differential geometry and functional analysis on the part of the reader.
Rudyak 's groundbreaking monograph is the first guide on the subject of cobordism since Stong's influential notes of a generation ago. It concentrates on Thom spaces (spectra), orientability theory and (co)bordism theory (including (co)bordism with singularities and, in particular, Morava K-theories). These are all framed by (co)homology theories and spectra. The author has also performed a service to the history of science in this book, giving detailed attributions.
Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic complements. 2. Specific invariants of degree 3 for knots in the solid torus. These invariants cannot be generalized for knots in handlebodies of higher genus, in contrast to invariants coming from the theory of skein modules. 2 3. We introduce a special class of knots called global knots, in F x lR and we construct new isotopy invariants, called T-invariants, for global knots. Some T-invariants (but not all !) are of finite type but they cannot be extracted from the generalized Kontsevich integral, which is consequently not the universal invariant of finite type for the restricted class of global knots. We prove that T-invariants separate all global knots of a certain type. 3 As a corollary we prove that certain links in 5 are not invertible without making any use of the link group! Introduction and announcement This work is an introduction into the world of Gauss diagram invariants.
In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations.
This volume offers an introduction, in the form of four extensive lectures, to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. The first lecture is by Christine Lescop on knot invariants and configuration spaces, in which a universal finite-type invariant for knots is constructed as a series of integrals over configuration spaces. This is followed by the contribution of Raimar Wulkenhaar on Euclidean quantum field theory from a statistical point of view. The author also discusses possible renormalization techniques on noncommutative spaces. The third lecture is by Anamaria Font and Stefan Theisen on string compactification with unbroken supersymmetry. The authors show that this requirement leads to internal spaces of special holonomy and describe Calabi-Yau manifolds in detail. The last lecture, by Thierry Fack, is devoted to a K-theory proof of the Atiyah-Singer index theorem and discusses some applications of K-theory to noncommutative geometry. These lectures notes, which are aimed in particular at graduate students in physics and mathematics, start with introductory material before presenting more advanced results. Each chapter is self-contained and can be read independently.
In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices. Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.
Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists
This book contains the results of work done during the years 1967-1970 on fixed-point-free involutions on manifolds, and is an enlarged version of the author's doctoral dissertation [54J written under the direction of Professor William Browder. The subject of fixed-paint-free involutions, as part of the subject of group actions on manifolds, has been an important source of problems, examples and ideas in topology for the last four decades, and receives renewed attention every time a new technical development suggests new questions and methods ([62, 8, 24, 63J). Here we consider mainly those properties of fixed-point-free involutions that can be best studied using the techniques of surgery on manifolds. This approach to the subject was initiated by Browder and Livesay. Special attention is given here to involutions of homotopy spheres, but even for this particular case, a more general theory is very useful. Two important related topics that we do not touch here are those of involutions with fixed points, and the relationship between fixed-point-free involutions and free Sl-actions. For these topics, the reader is referred to [23J, and to [33J, [61J, [82J, respectively. The two main problems we attack are those of classification of involutions, and the existence and uniqueness of invariant submanifolds with certain properties. As will be seen, these problems are closely related. If (T, l'n) is a fixed-point-free involution of a homotopy sphere l'n, the quotient l'n/Tis called a homotopy projective space.
Over the past fifteen years, the geometrical and topological methods of the theory of manifolds have as- sumed a central role in the most advanced areas of pure and applied mathematics as well as theoretical physics. The three volumes of Modern Geometry - Methods and Applications contain a concrete exposition of these methods together with their main applications in mathematics and physics. This third volume, presented in highly accessible languages, concentrates in homology theory. It contains introductions to the contemporary methods for the calculation of homology groups and the classification of manifesto. Both scientists and students of mathematics as well as theoretical physics will find this book to be a valuable reference and text.
DYNAMICS REPORTED reports on recent developments in dynamical systems. Dynamical systems of course originated from ordinary differential equations. Today, dynamical systems cover a much larger area, including dynamical processes described by functional and integral equations, by partial and stochastic differential equations, etc. Dynamical systems have involved remarkably in recent years. A wealth of new phenomena, new ideas and new techniques are proving to be of considerable interest to scientists in rather different fields. It is not surprising that thousands of publications on the theory itself and on its various applications are appearing DYNAMICS REPORTED presents carefully written articles on major subjects in dynam ical systems and their applications, addressed not only to specialists but also to a broader range of readers including graduate students. Topics are advanced, while detailed expo sition of ideas, restriction to typical results - rather than the most general ones - and, last but not least, lucid proofs help to gain the utmost degree of clarity. It is hoped, that DYNAMICS REPORTED will be useful for those entering the field and will stimulate an exchange of ideas among those working in dynamical systems Summer 1991 Christopher K. R. T Jones Drs Kirchgraber Hans-Otto Walther Managing Editors Table of Contents Hyperbolicity and Exponential Dichotomy for Dynamical Systems Neil Fenichel 1. Introduction . . . . . . . . . . . . . . . . . . I 2. The Main Lemma . . . . . . . . . . . . . . . . 2 3. The Linearization Theorem of Hartman and Grobman 5 4. Hyperbolic Invariant Sets: EURO-orbits and Stable Manifolds 6 5.
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology. |
You may like...
Handbook of Pediatric Brain Imaging…
Hao Huang, Timothy Roberts
Paperback
R3,531
Discovery Miles 35 310
Elementary Probability Theory - With…
Kai Lai Chung, Farid Aitsahlia
Hardcover
R2,426
Discovery Miles 24 260
Filtering Theory - With Applications to…
Ali Saberi, Anton A. Stoorvogel, …
Hardcover
R4,411
Discovery Miles 44 110
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
|