![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Analytic geometry
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und ihre Rolle in der Geometrie, der Numerik und der Computergraphik. Der unter Anwendung der neuesten Technologie vollst ndig computergenierte Film spannt einen Bogen von der antiken griechischen Mathematik zum Gebiet der heutigen geometrischen Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit gewonnen. Die Autoren sind Konrad Polthier, ein Professor der Mathematik, und Beau Janzen, ein professioneller Filmdirektor. Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in Geometrie, Visualisierung, wissenschaftlichem Rechnen und geometrischer Modellierung an Universit ten, Zentren f r wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt werden.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps.
This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field.Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval.Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surface diagrams, handle surgeries, ribbon surface-knots, spinning construction, knot concordance and 4-genus, quandles and their homology theory, and two-dimensional braids.
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell-Jones conjectures, and the other on ends of spaces and groups. In 2010-2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, classical results from the cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. It has also been used to give in sights into new developments in the spectral theory of linear operators. Various concepts from function theory and complex analytic geometry are drawn together and used to give a new approach to concrete spectral computations. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas which should stimulate further research.
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.
Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos's Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool.
This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written by mathematicians from several countries, including Brazil, Spain, Mexico, Japan and the USA, on relevant topics on Theory of Singularity, such as studies on deformations, Milnor fibration, foliations, Catastrophe theory, and myriad applications. Open problems are also introduced, making this volume a must-read both for graduate students and active researchers in this field.
This book contains nine well-organized survey articles by leading researchers in positivity, with a strong emphasis on functional analysis. It provides insight into the structure of classical spaces of continuous functions, f-algebras, and integral operators, but also contains contributions to modern topics like vector measures, operator spaces, ordered tensor products, non-commutative Banach function spaces, and frames. Contributors: B. Banerjee, D.P. Blecher, K. Boulabiar, Q. Bu, G. Buskes, G.P. Curbera, M. Henriksen, A.G. Kusraev, J. Marti-nez, B. de Pagter, W.J. Ricker, A.R. Schep, A. Triki, A.W. Wickstead
In recent years, there has been tremendous progress on the interface of geometry and mathematical physics. This book reflects the expanded articles of several lectures in these areas delivered at the University of Adelaide, with an audience of primarily graduate students. The aim of this volume is to provide surveys of recent progress without assuming too much prerequisite knowledge and with a comprehensive bibliography, so that researchers and graduate students in geometry and mathematical physics will benefit. The contributors cover a number of areas in mathematical physics. Chapter 1 offers a self-contained derivation of the partition function of Chern-Simons gauge theory in the semiclassical approximation. Chapter 2 considers the algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory, including their relation to the braid group, quantum groups and infinite dimensional Lie algebras. Chapter 3 surveys the application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems. Chapter 4 examines the variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds. Chapter 5 is a review of monopoles in non-Abelian gauge theories and the various approaches to understanding them. Chapter 6 covers much of the exciting recent developments in quantum cohomology, including relative Gromov-Witten invariant, birational geometry, naturality and mirror symmetry. Chapter 7 explains the physics origin of the Seiberg-Witten equations in four-manifold theory and a number of important concepts in quantum field theory, such asvacuum, mass gap, (super)symmetry, anomalies and duality. Contributors: D.H. Adam, P. Bouwknegt, A.L. Carey, A. Harris, E. Langmann, M.K. Murray, Y. Ruan, S. Wu D. H. Adams: Semiclassical Approximation in Chern-Simons Gauge Theory P. Bouwknegt: The Knizhnik-Zamolodchikov Equations A. L. Carey and E. Langmann: Loop Groups and Quantum Fields A. Harris: Some Applications of Variational Calculus in Hermitian Geometry M. K. Murray: Monopoles Y. Ruan: On Gromov-Witten Invariants and Quantum Cohomology S. Wu The Geometry and Physics of the Seiberg-Witten Equations
The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker's equations.
This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader. "Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition" provides new material in most chapters, but a particular emphasis remains on contact manifolds. Researchers, mathematicians, and graduate students in contact and symplectic manifold theory and in Riemannian geometry will benefit from this work. A basic course in Riemannian geometry is a prerequisite.
Despite the fact that Maple V has become one of the most popular computer algebra systems on the market, surprisingly few users realize its potential in the field of scientific visualization. The purpose of this book is to equip the reader with a variety of graphics tools needed on the voyage of discovery into the complex and often beautiful world of curves and surfaces. A comprehensive treatment of Maple's graphics commands and structures is combined with an introduction to the main aspects of visual perception. Top priority is given to the use of light, color, perspective, and geometric transformations. Numerous examples, accompanied by pictures (many in color), cover all aspects of Maple graphics. The examples can be easily customized to suit the individual needs of the reader. The approach is context independent, and as such will appeal to students, educators, and researchers in a broad spectrum of scientific disciplines. For the general user at any level of experience, this book can serve as a comprehensive reference manual. For the beginner, it offers a user- friendly elementary introduction to the subject, with mathematical requirements kept to a minimum. For those interested in advanced mathematical visualization, it explains how to maximize Maple's graphical capabilities. In particular, this book shows how to turn Maple into an excellent modeling tool capable of generating elaborate surfaces that conventional modelers cannot produce. These surfaces can be exported to an external ray tracer (e.g. POV-ray) for sophisticated photo-realistic rendering. All of the Maple code segments which are presented in the book, as well as high-resolution pictures showing alternative renderingsof some of the book's color plates, are included on the accompanying DOS diskette.
The school, the book This book is based on lectures given by the authors of the various chapters in a three week long CIMPA summer school, held in Sophia-Antipolis (near Nice) in July 1992. The first week was devoted to the basics of symplectic and Riemannian geometry (Banyaga, Audin, Lafontaine, Gauduchon), the second was the technical one (Pansu, Muller, Duval, Lalonde and Sikorav). The final week saw the conclusion ofthe school (mainly McDuffand Polterovich, with complementary lectures by Lafontaine, Audin and Sikorav). Globally, the chapters here reflect what happened there. Locally, we have tried to reorganise some ofthe material to make the book more coherent. Hence, for instance, the collective (Audin, Lalonde, Polterovich) chapter on Lagrangian submanifolds and the appendices added to some of the chapters. Duval was not able to write up his lectures, so that genuine complex analysis will not appear in the book, although it is a very current tool in symplectic and contact geometry (and conversely). Hamiltonian systems and variational methods were the subject of some of Sikorav's talks, which he also was not able to write up. On the other hand, F. Labourie, who could not be at the school, wrote a chapter on pseudo-holomorphic curves in Riemannian geometry.
This volume, dedicated to the eminent mathematician Vladimir Arnold, presents a collection of research and survey papers written on a large spectrum of theories and problems that have been studied or introduced by Arnold himself. Emphasis is given to topics relating to dynamical systems, stability of integrable systems, algebraic and differential topology, global analysis, singularity theory and classical mechanics. A number of applications of Arnold's groundbreaking work are presented. This publication will assist graduate students and research mathematicians in acquiring an in-depth understanding and insight into a wide domain of research of an interdisciplinary nature.
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. It is particularly these interactions with different fields that make L2-invariants very powerful and exciting. The book presents a comprehensive introduction to this area of research, as well as its most recent results and developments. It is written in a way which enables the reader to pick out a favourite topic and to find the result she or he is interested in quickly and without being forced to go through other material.
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications. |
You may like...
|