![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Analytic geometry
This book is devoted to applications of singularity theory in mathematics and physics, covering a broad spectrum of topics and problems. "The book contains a huge amount of information from all the branches of Singularity Theory, presented in a very attractive way, with lots of inspiring pictures." --ZENTRALBLATT MATH
"The book is largely self-contained...There is a nice introduction to symplectic geometry and a charming exposition of equivariant K-theory. Both are enlivened by examples related to groups...An attractive feature is the attempt to convey some informal wisdom rather than only the precise definitions. As a number of results are] due to the authors, one finds some of the original excitement. This is the only available introduction to geometric representation theory...it has already proved successful in introducing a new generation to the subject." (Bulletin of the AMS)
"Mas has dicho, Sancho, de 10 que sabes (dixo Don Quixote), que hay algunos que se cansan en saber, y averiguar cosas que despues de sabidas, y averiguadas, no importa un ardite al entendimiento, ni a la memoria. " "You have said more than you know, Sancho," said Don Quixote, "for there are some who tire them selves out learning and proving things which, once learnt and proved, do not concern either 'the under standing 01' the memory a jot. " Cervantes, Don Quixote, Part II, Chapter LXXV, Of the great Adventure of Montesinos' Cave in the heart of La Mancha, which the valorous Don Quixote brought to a happy ending. This book explores a relationship between classical tessellations and three-manifolds. All of us are very familiar with the symmetrical ornamental motifs used in the decoration of walls and ceilings. Oriental palaces contain an abundance of these, and many examples taken from them will be found in the following pages. These are the so-called mosaics or symmetrical tessellations of the euclidean plane. Even though we can imagine or even create very many of them, in fact the rules governing them are quite restrictive, if our purpose is to understand the symmetric group of the tessellation, that is to say, the group consisting of the plane isometries which leave the tessel lation invariant."
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston 's hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Categories and sheaves, which emerged in the middle of the last century as an enrichment for the concepts of sets and functions, appear almost everywhere in mathematics nowadays. This book covers categories, homological algebra and sheaves in a systematic and exhaustive manner starting from scratch, and continues with full proofs to an exposition of the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasising inductive and projective limits, tensor categories, representable functors, ind-objects and localization. Then they study homological algebra including additive, abelian, triangulated categories and also unbounded derived categories using transfinite induction and accessible objects. Finally, sheaf theory as well as twisted sheaves and stacks appear in the framework of Grothendieck topologies.
This volume grew out of a series of preprints which were written and circulated - tween 1993 and 1994. Around the same time, related work was done independently by Harder [40] and Laumon [62]. In writing this text based on a revised version of these preprints that were widely distributed in summer 1995, I ?nally did not p- sue the original plan to completely reorganize the original preprints. After the long delay, one of the reasons was that an overview of the results is now available in [115]. Instead I tried to improve the presentation modestly, in particular by adding cross-references wherever I felt this was necessary. In addition, Chaps. 11 and 12 and Sects. 5. 1, 5. 4, and 5. 5 were added; these were written in 1998. I willgivea moredetailedoverviewofthecontentofthedifferentchaptersbelow. Before that I should mention that the two main results are the proof of Ramanujan's conjecture for Siegel modular forms of genus 2 for forms which are not cuspidal representations associated with parabolic subgroups(CAP representations), and the study of the endoscopic lift for the group GSp(4). Both topics are formulated and proved in the ?rst ?ve chapters assuming the stabilization of the trace formula. All the remaining technical results, which are necessary to obtain the stabilized trace formula, are presented in the remaining chapters. Chapter 1 gathers results on the cohomology of Siegel modular threefolds that are used in later chapters, notably in Chap. 3. At the beginning of Chap.
This book is based on notes for a master's course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ( 20]), by Cohen ( 4]), and by Epstein et al. ( 7]). Some use was also made of a later book by Hopcroft and Ullman ( 21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel ] numbering, having de?ned "recursively enumerable" for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive."
Vector?eldsonmanifoldsplaymajorrolesinmathematicsandothersciences. In particular, the Poincar' e-Hopf index theorem and its geometric count- part,the Gauss-Bonnettheorem, giveriseto the theoryof Chernclasses,key invariants of manifolds in geometry and topology. One has often to face problems where the underlying space is no more a manifold but a singular variety. Thus it is natural to ask what is the "good" notionofindexofavector?eld,andofChernclasses,ifthespaceacquiress- gularities.Thequestionwasexploredbyseveralauthorswithvariousanswers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. Marseille Jean-Paul Brasselet Cuernavaca Jos' e Seade Tokyo Tatsuo Suwa September 2009 v Acknowledgements Parts of this monograph were written while the authors were staying at various institutions, such as Hokkaido University and Niigata University in Japan, CIRM, Universit' e de la Mediterran' ee and IML at Marseille, France, the Instituto de Matem' aticas of UNAM at Cuernavaca, Mexico, ICTP at Trieste, Italia, IMPA at Rio de Janeiro, and USP at S" ao Carlos in Brasil, to name a few, and we would like to thank them for their generous hospitality and support. Thanks are also due to people who helped us in many ways, in particular our co-authors of results quoted in the book: Marcelo Aguilar, Wolfgang Ebeling, Xavier G' omez-Mont, Sabir Gusein-Zade, LeDung " Tran ' g, Daniel Lehmann, David Massey, A.J. Parameswaran, Marcio Soares, Mihai Tibar, Alberto Verjovsky,andmanyother colleagueswho helped usin variousways.
Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. This is the first book which presents an overview of several striking results ensuing from the examination of Einstein 's equations in the context of Riemannian manifolds. Parts of the text can be used as an introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals.
One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spinor fields are sections in an L DEGREES2-Hilbert space bundle over a symplectic manifold and symplectic Dirac operators, acting on symplectic spinor fields, are associated to the symplectic manifold in a very natural way. They may be expected to give interesting applications in symplectic geometry and symplectic topology. These symplectic Dirac operators are called Dirac operators, since they are defined in an analogous way as the classical Riemannian Dirac operator known from Riemannian spin geometry. They are called symplectic because they are constructed by use of the symplectic setting of the underlying symplectic manifold. This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.
The present book is devoted to a study of relative Prüfer rings and Manis valuations, with an eye to application in real and p-adic geometry. If one wants to expand on the usual algebraic geometry over a non-algebraically closed base field, e.g. a real closed field or p-adically closed field, one typically meets lots of valuation domains. Usually they are not discrete and hence not noetherian. Thus, for a further develomemt of real algebraic and real analytic geometry in particular, and certainly also rigid analytic and p-adic geometry, new chapters of commutative algebra are needed, often of a non-noetherian nature. The present volume presents one such chapter.
Auf der Grundlage einer Einfuhrung in die kommutative Algebra,
algebraische
Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.
From the reviews:
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, K hlerianity, geodesics, curvature. Finally global geometry and complex Monge-Amp re equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
There seems to be no doubt that geometry originates from such practical activ ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, "The objective of mathematics is the study of space forms and quantitative relations of the real world. " Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's "Elements," purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti tative relations."
This volume contains three long lecture series by J.L. Colliot-Thelene, Kazuya Kato and P. Vojta. Their topics are respectively the connection between algebraic K-theory and the torsion algebraic cycles on an algebraic variety, a new approach to Iwasawa theory for Hasse-Weil L-function, and the applications of arithemetic geometry to Diophantine approximation. They contain many new results at a very advanced level, but also surveys of the state of the art on the subject with complete, detailed profs and a lot of background. Hence they can be useful to readers with very different background and experience. CONTENTS: J.L. Colliot-Thelene: Cycles algebriques de torsion et K-theorie algebrique.- K. Kato: Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions.- P. Vojta: Applications of arithmetic algebraic geometry to diophantine approximations.
About ten years ago, V.D. Goppa found a surprising connection between the theory of algebraic curves over a finite field and error-correcting codes. The aim of the meeting "Algebraic Geometry and Coding Theory" was to give a survey on the present state of research in this field and related topics. The proceedings contain research papers on several aspects of the theory, among them: Codes constructed from special curves and from higher-dimensional varieties, Decoding of algebraic geometric codes, Trace codes, Exponen- tial sums, Fast multiplication in finite fields, Asymptotic number of points on algebraic curves, Sphere packings.
A workshop on Singularities, Bifurcation and Dynamics was held at Warwick in July 1989 as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory, and applications in the sciences. The papers are orginal research, stimulated by the symposium and workshops: All have been refereed, and none will appear elsewhere. The main topic, deformation theory, is represented by several papers on descriptions of the bases of versal deformations, and several more on descriptions of the generic fibres. Other topics include stratifications, and applications to differential geometry.
Abelian varieties are a natural generalization of elliptic curves to higher dimensions, whose geometry and classification are as rich in elegant results as in the one-dimensional ease. The use of theta functions, particularly since Mumford's work, has been an important tool in the study of abelian varieties and invertible sheaves on them. Also, abelian varieties play a significant role in the geometric approach to modern algebraic number theory. In this book, Kempf has focused on the analytic aspects of the geometry of abelian varieties, rather than taking the alternative algebraic or arithmetic points of view. His purpose is to provide an introduction to complex analytic geometry. Thus, he uses Hermitian geometry as much as possible. One distinguishing feature of Kempf's presentation is the systematic use of Mumford's theta group. This allows him to give precise results about the projective ideal of an abelian variety. In its detailed discussion of the cohomology of invertible sheaves, the book incorporates material previously found only in research articles. Also, several examples where abelian varieties arise in various branches of geometry are given as a conclusion of the book.
The book explores the possibility of extending the notions of "Grassmannian" and "Gauss map" to the PL category. They are distinguished from "classifying space" and "classifying map" which are essentially homotopy-theoretic notions. The analogs of Grassmannian and Gauss map defined incorporate geometric and combinatorial information. Principal applications involve characteristic class theory, smoothing theory, and the existence of immersion satifying certain geometric criteria, e.g. curvature conditions. The book assumes knowledge of basic differential topology and bundle theory, including Hirsch-Gromov-Phillips theory, as well as the analogous theories for the PL category. The work should be of interest to mathematicians concerned with geometric topology, PL and PD aspects of differential geometry and the geometry of polyhedra.
These proceedings include selected and refereed original papers; most are research papers, a few are comprehensive survey articles.
The main subjects of the Siegen Topology Symposium are reflected in this collection of 16 research and expository papers. They center around differential topology and, more specifically, around linking phenomena in 3, 4 and higher dimensions, tangent fields, immersions and other vector bundle morphisms. Manifold categories, K-theory and group actions are also discussed. |
![]() ![]() You may like...
Random Walks and Diffusions on Graphs…
Philipp Blanchard, Dimitri Volchenkov
Hardcover
R3,047
Discovery Miles 30 470
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R3,162
Discovery Miles 31 620
Essays in Mathematics and its…
Themistocles M. Rassias, Panos M. Pardalos
Hardcover
R3,231
Discovery Miles 32 310
Extrinsic Geometry of Foliations
Vladimir Rovenski, Pawel Walczak
Hardcover
R3,582
Discovery Miles 35 820
|