![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Analytic geometry
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
An Unabridged Printing, To Include All Figures: The Basis Of Design In Nature - The Root Of Rectangles - The Leaf - Root Rectangles And Some Vase Forms - Plato's Most Beautiful Shape - A Brygos Kantharos And Other Pottery Examples Of Similar Rectangle Shapes - A Hydria, Stamnos, A Pyxis And Other Vase Forms - Further Analysis Of Vase Forms - Skyphoi - Kylikes - Vase Analysis Continues - Static Symmetry - Appendix
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This concise text introduces students to the elements of analytical geometry, covering basic ideas and methods. Topics include transformation of axes, the line at infinity, conics and pencils of conics, homographic correspondence, line-coordinates, and generalized homogeneous coordinates. An appendix discusses solutions to many of the examples. 1957 edition.
Brief but rigorous, this text is geared toward advanced undergraduates and graduate students. It covers the coordinate system, planes and lines, spheres, homogeneous coordinates, general equations of the second degree, quadric in Cartesian coordinates, and intersection of quadrics. Mathematician, physicist, and astronomer, William H. McCrea conducted research in many areas and is best known for his work on relativity and cosmology. McCrea studied and taught at universities around the world, and this book is based on a series of his lectures.
Boyer's landmark study about how mathematical ideas are transmitted from one practitioner to another is here reprinted from the Yeshiva University Press edition of 1956. Writing for undergraduate students and general readers interested in mathematics, Boyer starts with the first scribbles on papyrus and moves from contributor to contributor through
Translated from the Latin With notes and examples.
This volume aims to bridge between elementary textbooks on calculus and established books on advanced analysis. It provides elucidation of the reversible process of differentiation and integration through two featured principles: the chain rule and its inverse - the change of variable - as well as the Leibniz rule and its inverse - the integration by parts. The chain rule or differentiation of composite functions is ubiquitous since almost all (a.a.) functions are composite functions of (elementary) functions and with the change of variable method as its reverse process. The Leibniz rule or differentiation of the product of two functions is essential since it makes differentiation nonlinear and with the method of integration by parts as its reverse process.Readers will find numerous worked-out examples and exercises in this volume. Detailed solutions are provided for most of the common exercises so that readers remain enthusiastically motivated in solving and understanding the concepts better.The intention of this volume is to lead the reader into the rich fields of advanced analysis and to obtain a much better view of useful mathematics.
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.
This book provides a comprehensive introduction to Submanifold theory, focusing on general properties of isometric and conformal immersions of Riemannian manifolds into space forms. One main theme is the isometric and conformal deformation problem for submanifolds of arbitrary dimension and codimension. Several relevant classes of submanifolds are also discussed, including constant curvature submanifolds, submanifolds of nonpositive extrinsic curvature, conformally flat submanifolds and real Kaehler submanifolds. This is the first textbook to treat a substantial proportion of the material presented here. The first chapters are suitable for an introductory course on Submanifold theory for students with a basic background on Riemannian geometry. The remaining chapters could be used in a more advanced course by students aiming at initiating research on the subject, and are also intended to serve as a reference for specialists in the field.
A central problem in differential geometry is to relate algebraic properties of the Riemann curvature tensor to the underlying geometry of the manifold. The full curvature tensor is in general quite difficult to deal with. This book presents results about the geometric conse-quences that follow if various natural operators defined in terms of the Riemann curvature tensor (the Jacobi operator, the skew-symmetric curvature operator, the Szabo operator, and higher order generalizations) are assumed to have constant eigenvalues or constant Jordan normal form in the appropriate domains of definition. The book presents algebraic preliminaries and various Schur type problems; deals with the skew-symmetric curvature operator in the real and complex settings and provides the classification of algebraic curvature tensors whos skew-symmetric curvature has constant rank 2 and constant eigenvalues; discusses the Jacobi operator and a higher order generalization and gives a unified treatment of the Osserman conjecture and related questions; and establishes the results from algebraic topology that are necessary for controlling the eigenvalue structures. An extensive bibliography is provided. Results are described in the Riemannian, Lorentzian, and higher signature settings, and many families of examples are displayed. |
![]() ![]() You may like...
Model and Design of Improved Current…
Kirti Gupta, Neeta Pandey, …
Hardcover
R2,873
Discovery Miles 28 730
Computational Geometry For Ships
Horst Nowacki, M.I.G. Bloor, …
Hardcover
R2,549
Discovery Miles 25 490
Semi-bounded Differential Operators…
Alberto Cialdea, Vladimir Maz'ya
Hardcover
Heterogeneous Multicore Processor…
Kunio Uchiyama, Fumio Arakawa, …
Hardcover
R2,892
Discovery Miles 28 920
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
Research Anthology on Interventions in…
Information Resources Management Association
Hardcover
R7,859
Discovery Miles 78 590
|