![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Analytic geometry
Intersection cohomology assigns groups which satisfy a generalized form of Poincare duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincare duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
Categories and sheaves, which emerged in the middle of the last century as an enrichment for the concepts of sets and functions, appear almost everywhere in mathematics nowadays. This book covers categories, homological algebra and sheaves in a systematic and exhaustive manner starting from scratch, and continues with full proofs to an exposition of the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasising inductive and projective limits, tensor categories, representable functors, ind-objects and localization. Then they study homological algebra including additive, abelian, triangulated categories and also unbounded derived categories using transfinite induction and accessible objects. Finally, sheaf theory as well as twisted sheaves and stacks appear in the framework of Grothendieck topologies.
A. Banyaga: On the group of diffeomorphisms preserving an exact symplectic.- G.A. Fredricks: Some remarks on Cauchy-Riemann structures.- A. Haefliger: Differentiable Cohomology.- J.N. Mather: On the homology of Haefliger 's classifying space.- P. Michor: Manifolds of differentiable maps.- V. Poenaru: Some remarks on low-dimensional topology and immersion theory.- F. Sergeraert: La classe de cobordisme des feuilletages de Reeb de S est nulle.- G. Wallet: Invariant de Godbillon-Vey et diff omorphismes commutants.
This book is based on notes for a master's course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ( 20]), by Cohen ( 4]), and by Epstein et al. ( 7]). Some use was also made of a later book by Hopcroft and Ullman ( 21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel ] numbering, having de?ned "recursively enumerable" for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive."
Vector?eldsonmanifoldsplaymajorrolesinmathematicsandothersciences. In particular, the Poincar' e-Hopf index theorem and its geometric count- part,the Gauss-Bonnettheorem, giveriseto the theoryof Chernclasses,key invariants of manifolds in geometry and topology. One has often to face problems where the underlying space is no more a manifold but a singular variety. Thus it is natural to ask what is the "good" notionofindexofavector?eld,andofChernclasses,ifthespaceacquiress- gularities.Thequestionwasexploredbyseveralauthorswithvariousanswers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. Marseille Jean-Paul Brasselet Cuernavaca Jos' e Seade Tokyo Tatsuo Suwa September 2009 v Acknowledgements Parts of this monograph were written while the authors were staying at various institutions, such as Hokkaido University and Niigata University in Japan, CIRM, Universit' e de la Mediterran' ee and IML at Marseille, France, the Instituto de Matem' aticas of UNAM at Cuernavaca, Mexico, ICTP at Trieste, Italia, IMPA at Rio de Janeiro, and USP at S" ao Carlos in Brasil, to name a few, and we would like to thank them for their generous hospitality and support. Thanks are also due to people who helped us in many ways, in particular our co-authors of results quoted in the book: Marcelo Aguilar, Wolfgang Ebeling, Xavier G' omez-Mont, Sabir Gusein-Zade, LeDung " Tran ' g, Daniel Lehmann, David Massey, A.J. Parameswaran, Marcio Soares, Mihai Tibar, Alberto Verjovsky,andmanyother colleagueswho helped usin variousways.
Even the simplest singularities of planar curves, e.g. where the curve crosses itself, or where it forms a cusp, are best understood in terms of complex numbers. The full treatment uses techniques from algebra, algebraic geometry, complex analysis and topology and makes an attractive chapter of mathematics, which can be used as an introduction to any of these topics, or to singularity theory in higher dimensions. This book is designed as an introduction for graduate students and draws on the author's experience of teaching MSc courses; moreover, by synthesising different perspectives, he gives a novel view of the subject, and a number of new results.
This book, first published in 2004, is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, a prelude to the congruence classification. A recurring theme is the way in which lines intersect conics. From single lines one proceeds to parallel pencils, leading to midpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of lines lead to the central concepts of tangent, normal, pole and polar. The treatment is example based and self contained, assuming only a basic grounding in linear algebra. With numerous illustrations and several hundred worked examples and exercises, this book is ideal for use with undergraduate courses in mathematics, or for postgraduates in the engineering and physical sciences.
This volume grew out of a series of preprints which were written and circulated - tween 1993 and 1994. Around the same time, related work was done independently by Harder [40] and Laumon [62]. In writing this text based on a revised version of these preprints that were widely distributed in summer 1995, I ?nally did not p- sue the original plan to completely reorganize the original preprints. After the long delay, one of the reasons was that an overview of the results is now available in [115]. Instead I tried to improve the presentation modestly, in particular by adding cross-references wherever I felt this was necessary. In addition, Chaps. 11 and 12 and Sects. 5. 1, 5. 4, and 5. 5 were added; these were written in 1998. I willgivea moredetailedoverviewofthecontentofthedifferentchaptersbelow. Before that I should mention that the two main results are the proof of Ramanujan's conjecture for Siegel modular forms of genus 2 for forms which are not cuspidal representations associated with parabolic subgroups(CAP representations), and the study of the endoscopic lift for the group GSp(4). Both topics are formulated and proved in the ?rst ?ve chapters assuming the stabilization of the trace formula. All the remaining technical results, which are necessary to obtain the stabilized trace formula, are presented in the remaining chapters. Chapter 1 gathers results on the cohomology of Siegel modular threefolds that are used in later chapters, notably in Chap. 3. At the beginning of Chap.
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.
Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. This is the first book which presents an overview of several striking results ensuing from the examination of Einstein 's equations in the context of Riemannian manifolds. Parts of the text can be used as an introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals.
One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spinor fields are sections in an L DEGREES2-Hilbert space bundle over a symplectic manifold and symplectic Dirac operators, acting on symplectic spinor fields, are associated to the symplectic manifold in a very natural way. They may be expected to give interesting applications in symplectic geometry and symplectic topology. These symplectic Dirac operators are called Dirac operators, since they are defined in an analogous way as the classical Riemannian Dirac operator known from Riemannian spin geometry. They are called symplectic because they are constructed by use of the symplectic setting of the underlying symplectic manifold. This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.
This book provides a comprehensive and self-contained exposition of the algebro-geometric theory of singularities of plane curves, covering both its classical and its modern aspects. The book gives a unified treatment, with complete proofs, presenting modern results which have only ever appeared in research papers. It updates and correctly proves a number of important classical results for which there was formerly no suitable reference, and includes new, previously unpublished results as well as applications to algebra and algebraic geometry. This book will be useful as a reference text for researchers in the field. It is also suitable as a textbook for postgraduate courses on singularities, or as a supplementary text for courses on algebraic geometry (algebraic curves) or commutative algebra (valuations, complete ideals).
Minkowski geometry is a type of non-Euclidean geometry in a finite number of dimensions in which distance is not 'uniform' in all directions. This book presents the first comprehensive treatment of Minkowski geometry since the 1940s. The author begins by describing the fundamental metric properties and the topological properties of existence of Minkowski space. This is followed by a treatment of two-dimensional spaces and characterisations of Euclidean space among normed spaces. The central three chapters present the theory of area and volume in normed spaces, a fascinating geometrical interplay among the various roles of the ball in Euclidean space. Later chapters deal with trigonometry and differential geometry in Minkowski spaces. The book ends with a brief look at J. J. Schaffer's ideas on the intrinsic geometry of the unit sphere. Minkowski Geometry will appeal to students and researchers interested in geometry, convexity theory and functional analysis.
The present book is devoted to a study of relative Prüfer rings and Manis valuations, with an eye to application in real and p-adic geometry. If one wants to expand on the usual algebraic geometry over a non-algebraically closed base field, e.g. a real closed field or p-adically closed field, one typically meets lots of valuation domains. Usually they are not discrete and hence not noetherian. Thus, for a further develomemt of real algebraic and real analytic geometry in particular, and certainly also rigid analytic and p-adic geometry, new chapters of commutative algebra are needed, often of a non-noetherian nature. The present volume presents one such chapter.
This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics which has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics.
This work provides a lucid and rigorous account of the foundations of algebraic geometry. The authors have confined themselves to fundamental concepts and geometrical methods, and do not give detailed developments of geometrical properties but geometrical meaning has been emphasised throughout. Here in this volume, the authors have again confined their attention to varieties defined on a ground field without characteristic. In order to familiarize the reader with the different techniques available to algebraic geometers, they have not confined themselves to one method and on occasion have deliberately used more advanced methods where elementary ones would serve, when by so doing it has been possible to illustrate the power of the more advanced techniques, such as valuation theory. The other two volumes of Hodge and Pedoe's classic work are also available. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
Volume 2 gives an account of the principal methods used in developing a theory of algebraic varieties on n dimensions, and supplies applications of these methods to some of the more important varieties that occur in projective geometry.
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
From the reviews:
Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, K hlerianity, geodesics, curvature. Finally global geometry and complex Monge-Amp re equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
There seems to be no doubt that geometry originates from such practical activ ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, "The objective of mathematics is the study of space forms and quantitative relations of the real world. " Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's "Elements," purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti tative relations."
About ten years ago, V.D. Goppa found a surprising connection between the theory of algebraic curves over a finite field and error-correcting codes. The aim of the meeting "Algebraic Geometry and Coding Theory" was to give a survey on the present state of research in this field and related topics. The proceedings contain research papers on several aspects of the theory, among them: Codes constructed from special curves and from higher-dimensional varieties, Decoding of algebraic geometric codes, Trace codes, Exponen- tial sums, Fast multiplication in finite fields, Asymptotic number of points on algebraic curves, Sphere packings.
This volume contains three long lecture series by J.L. Colliot-Thelene, Kazuya Kato and P. Vojta. Their topics are respectively the connection between algebraic K-theory and the torsion algebraic cycles on an algebraic variety, a new approach to Iwasawa theory for Hasse-Weil L-function, and the applications of arithemetic geometry to Diophantine approximation. They contain many new results at a very advanced level, but also surveys of the state of the art on the subject with complete, detailed profs and a lot of background. Hence they can be useful to readers with very different background and experience. CONTENTS: J.L. Colliot-Thelene: Cycles algebriques de torsion et K-theorie algebrique.- K. Kato: Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions.- P. Vojta: Applications of arithmetic algebraic geometry to diophantine approximations. |
You may like...
The Oxford Handbook of Metamemory
John Dunlosky, Sarah Tauber
Hardcover
R5,560
Discovery Miles 55 600
Are We Free? - Psychology and Free Will
John Baer, James C Kaufman, …
Hardcover
R1,651
Discovery Miles 16 510
|