![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Zoology & animal sciences > Animal physiology
The annual Congress of the Italian Biochemical and Molecular Biology Society (SIB) was held in September 1999 in Alghero, Sardegna, Italy. The programme envisaged a symposium on molecular adaptations of haemoglobin function in ver- tebrates. Haemoglobin specialists from several countries were invited to speak at the symposium and paved the way for wide-ranging and stimulating discussions. The symposium contributions have been collected together in this volume. The structure/function relationship in haemoglobins from vertebrates (fishes populat- ing temperate and polar environments, diving birds, marine and terrestrial mam- mals) has been tackled from many angles, focusing on the adaptation of the oxy- gen-transport system to the constraints dictated by the environment. Eleven arti- cles review some of the most recent developments of the studies on this ancient oxygen-transport protein, characterized by high conservation during evolution. The volume offers the reader an updated, state-of-the-art summary of a field that is enjoying a true renaissance. Covering the topic from several viewpoints, the volume includes protein chemistry (amino acid sequence, secondary, tertiary and quaternary structures, thermodynamics of oxygen-binding features), molecular biology (globin gene structure, sequence, organization, expression and regulation) and evolution. In this representation of effective multidisciplinary and multina- tional collaborative efforts, reference is available to a wide range of disciplines and biological systems. The tools of the investigators comprise advanced and powerful methodologies developed in recent years, e. g.
This book is the compilation of papers presented at the International Symposium on In Vivo Body Composition Studies, held in Houston, Texas, November 10-12, 1992. The purpose of this conference was to report on the state-of-the-art techniques for in vivo body composition measurements and to present the most recent human data on normal body composition and changes during disease. This conference was the third in a series of meetings on body composition studies held in North America, and follows the successful meetings at Brookhaven National Laboratory in 1986, and the one in Toronto in 1989. A large number of excellent research papers were offered for consideration at this Conference which demonstrates the rapid growth of the field in the last three years. However, we had to limit the presentations to approximately 90 papers which provided a broad spectrum of the applications and recent interest in the subject. The proceedings of the Brookhaven meeting "In Vivo Body Composition Studies," is published by The Institute of Physical Sciences in Medicine, London. The proceedings of the Toronto meeting "In Vivo Body Composition Studies" was published by Plenum Press in its basic life science series. Both these meetings placed more emphasis on technical aspects while the current Houston meeting tried to emphasize more the emerging clinical applications of these techniques. The general sessions used at the Conference for presentations forms the basis of the order of appearance of the papers in this book.
Twenty five years ago, Bill Stebbins presented the principles of animal psychophysics in an edited volume (Stebbins, 1970) describing an array of modem, creative methodologies for investigating the range of sensory systems in a variety of vertebrate species. These principles included precise stimulus control, a well defined behavioral response, and a rigorous behavioral procedure appropriate to the organism under study. As a generation of comparative sensory scientists applied these principles, our knowledge of sensory and perceptual function in a wide range of animal species has grown dramatically, especially in the field of hearing. Comparative psychoacoustics, i. e. , the study of the hearing capabilities in animals using behavioral methods, is an area of animal psychophysics that has seen remarkable advances in methodology over the past 25 years. Acoustic stimuli are now routinely generated using digital methods providing the researcher with unprecedented possibilities for stimulus control and experimental design. The strategies and paradigms for data collection and analysis are becoming more refined as well, again due in large part to the widespread use of computers. In this volume, the reader will find a modem array of strategies designed to measure detection and discrimination of both simple and complex acoustic stimuli as well experimental designs to assess how organisms perceive, identify and classify acoustic stimuli. Refinements in modem methodologies now make it possible to compare diverse species tested under similar, if not identical, experimental conditions.
This book provides a comprehensive, up-to-date review of the distribution, pharmacology and physiology of central 5-hydroxytryptamine (5-HT)4 receptors. The 5-HT receptor subtypes exhibit a unique pharmacology, distribution and function, of which the 5-HT4 receptor has been one of the most intensively studied in recent years, both from a basic research standpoint and as a target for novel therapeutics.
`Are the Great Lakes getting better or worse?' This is the question that the public, scientists and managers are asking the International Joint Commission after a quarter-century of cooperative action by the United States and Canadian governments to clean up the Great Lakes. This volume contains papers from the workshop on Environmental Results, hosted in Windsor, Ontario, by the Great Lakes Science Advisory Board of the International Joint Commission, on September 12 and 13, 1996. The Great Lakes have been through almost a century of severe pollution from the manufacture, use and disposal of chemicals. In the 1960s wildlife biologists started to investigate the outbreaks of reproductive failure in fish-eating birds and ranch mink and to link these to exposure to organochlorine compounds. Human health researchers in the 1980s and 1990s linked growth retardation, behavioral anomalies and deficits in cognitive development with maternal consumption of Great Lakes fish prior to pregnancy. The Great Lakes became the laboratory where the theory of endocrine disruptors was first formulated. Now a group of Great Lakes scientists, hosted by the International Joint Commission, has compiled the story of the trends in the concentrations and effects of persistent toxic substances on wildlife and humans. The technical papers review the suitability of various organisms as indicators, and present the results of long-term monitoring of the concentrations and of the incidence of effects. The evidence shows that there was an enormous improvement in the late 1970s, but that in the late 1990s there are still concentrations of some persistent toxic substances that have stubbornly remained at levels that continue to cause toxicological effects.
Throughout history, hearing and sound perception have been typically framed in the context of how sound conveys information and how that information influences the listener. "Hear Where We Are" inverts this premise and examines how humans and other hearing animals use sound to establish acoustical relationships with their surroundings. This simple inversion reveals a panoply of possibilities by which we can re-evaluate how hearing animals use, produce, and perceive sound. Nuance in vocalizations become signals of enticement or boundary setting; silence becomes a field ripe in auditory possibilities; predator/prey relationships are infused with acoustic deception, and sounds that have been considered territorial cues become the fabric of cooperative acoustical communities. This inversion also expands the context of sound perception into a larger perspective that centers on biological adaptation within acoustic habitats. Here, the rapid synchronized flight patterns of flocking birds and the tight maneuvering of schooling fish becomes an acoustic engagement. Likewise, when stridulating crickets synchronize their summer evening chirrups, it has more to do with the 'cricket community' monitoring their collective boundaries rather than individual crickets establishing 'personal' territory or breeding fitness. In "Hear Where We Are" the author continuously challenges many of the bio-acoustic orthodoxies, reframing the entire inquiry into sound perception and communication. By moving beyond our common assumptions, many of the mysteries of acoustical behavior become revealed, exposing a fresh and fertile panorama of acoustical experience and adaptation.
Current Ornithology publishes authoritative, up-to-date, scholarly reviews of topics selected from the full range of current research in avian biology. Topics cover the spectrum from the molecular level of organization to population biology and community ecology. The series seeks especially to review (1) fields in which an abundant recent literature will benefit from synthesis and organization, or (2) newly emerging fields that are gaining recognition as the result of recent discoveries or shifts in perspective, or (3) fields in which students of vertebrates may benefit from comparisons of birds with other classes. All chapters are invited, and authors are chosen for their leadership in the subjects under review.
Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the "Fenn effect" was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.
by G. MILAZZO and M. BLANK This book contains the lectures of the fourth advanced course Bioelectrochemislry W Neroe-Muscle Function: Bioelectrochemistry, Mechanisms, Energetics and Contro~ which took place at the Majorana Center in Erice, Italy, October 20th to November 1, 1991. The scope of the course was international in terms of both sponsorship and partici pation. Sponsors included the Bioelectrochemical Society, NATO, International Union of Pure and Applied Biophysics (lUPAB), the World Federation of Scientists and the Italian National Research Council. One-third of the sixty participants were from Italy, but the majority came from eighteen other nations. Since the course was part of the International School of Biophysics, the biophysi cal point of view was emphasized in integrating the biology with the electrochemistry. Lecturers were asked to use a quantitative approach with accepted standards and proper units, since this is absolutely essential for developing an effective common language for communication across disciplines. Participants were also urged not to forget that biological systems could also be considered as physical systems. Ion channels are proteins and their properties as polyelectrolytes contribute to the specific biological properties. The existence of families of channels, with very similar structures but different selectivities, suggests that the specificities arise from slight variations of a general basic design. These perspectives on nerve-muscle function helped to make the school course a unique treatment of the subject.
Volumes I and 2 of this Plant Biotechnology series reviewed fundamental aspects of plant molecular biology and discussed production and analysis of the first generation of transgenic plants of potential use in agriculture and horticulture. These included plants resistant to insects, viruses and herbicides, which were produced by adding genes from other organisms. Realisation of the potential of plant breeding has led to a resurgence of interest in methods of altering the structure, composition and function of plant constituents, which represents an even greater challenge and offers scope for improving the quality of a wide range of agricultural products. This, in tum, has resulted in a re-evaluation of priorities and targets by industry. Volume 3 of this series considers the biochemical and gentic basis of the biosynthesis of plant products such as starch, lipids, carotenoids and cell walls, and evaluates the ways in which biosynthesis of these products can be modified for use in the food industries. Authors also cover the biosynthesis of rare secondary products and the function and application of proteins for plant protection and therapeutic use. The emphasis throughout is on the relationship between fundamen tal aspects of biosynthesis and structure-function relationships, and application of this knowledge to the redesigning and altering of plant products by molecular genetics."
Fish comprise more than 50% of all living vertebrates and are found
in a wide range of highly diverse habitats like the deep sea, the
shoreline, tide pools, tropical streams and sweetwater ponds.
During evolution, the senses of fish have adapted to the physical
conditions of the environment in which different species live. As a
result, the senses of fish exhibit a remarkable diversity that
allows different species to deal with the physical constraints
imposed by their habitat. In addition, fish have evolved several
new' sensory systems that are unique to the aquatic environment.
Intraspecific communication involves the activation of chemoreceptors and subsequent activation of different central areas that coordinate the responses of the entire organism-ranging from behavioral modification to modulation of hormones release. Animals emit intraspecific chemical signals, often referred to as pheromones, to advertise their presence to members of the same species and to regulate interactions aimed at establishing and regulating social and reproductive bonds. In the last two decades, scientists have developed a greater understanding of the neural processing of these chemical signals. Neurobiology of Chemical Communication explores the role of the chemical senses in mediating intraspecific communication. Providing an up-to-date outline of the most recent advances in the field, it presents data from laboratory and wild species, ranging from invertebrates to vertebrates, from insects to humans. The book examines the structure, anatomy, electrophysiology, and molecular biology of pheromones. It discusses how chemical signals work on different mammalian and non-mammalian species and includes chapters on insects, Drosophila, honey bees, amphibians, mice, tigers, and cattle. It also explores the controversial topic of human pheromones. An essential reference for students and researchers in the field of pheromones, this is also an ideal resource for those working on behavioral phenotyping of animal models and persons interested in the biology/ecology of wild and domestic species.
Research on thrombin structure and function has progressed significantly over the past three decades. We are continually discovering new functions f()r this enzyme in biology. Yet, until quite recently, a full, detailed, three dimensional picture of its structure was difficult to attain. We believe that this text represents a turning point and, more appropriately, a new start ing point for thrombin studies. Our goal for this text is to present a thorough and rounded-out coverage of thrombin chemistry and biochem istry in order to provide the biochemist and physiologist with an excellent desk reference on almost any thrombin-related problem. This volume is organized into three general thrombin topic areas: Structure, Biochemistry, and Physiology. In Part 1, Structure, we open with the complete three-dimensional x-ray structures of two inhibited human thrombin complexes, one of which is the thrombin-hirudin com plex. These complexes are also addressed in the chapter on structural studies in solution, which include NMR, ESR, and fluorescence. Part 2, Biochemistry, includes chapters on synthetic thrombin inhibitors, protein inhibitors (e.g., antithrombin III, hirudin), and thrombin interactions with factor XIII. Part 3, Physiology, covers such topics as chemotactic activities, interactions with cell surfaces, and the vascular endothelium.
Mesodenn is a key tissue in early development. It is involved in the differentiation of almost every organ in the body, not merely as a structural component, but as an active participant in the establishment of diverse cell types. All mesodenn is derived from ectoderm. Its appearance signals the start of a significant new phase in the development of the embryo. At this time all three genn layers are now present and myriad sequences of cell and tissue interactions begin to occur which will eventually give rise to the entire embryo. The control of the growth and differentiation of the mesoderm is critical for the production of a normal individual. Indeed, disturbance of the patterning of the mesoderm or of its interaction with other tissues plays a critical part in the fonnation of most congenital anomalies. The main focus of this book is therefore on the establishment, divergence and specialisation of mesodermal derivatives. The central role of the mesoderm in development has long been appreciated and a wide literature exists on its activity in certain specialised situations. Recently, however, an impetus to its study has been provided by new approaches opened up through biotechnological advances. Many of these advances are reflected in the reports in this volume. Scientists from various disciplines have become drawn to mesodermal tissues, and this volume may help them find a framework within which their work will fit.
This volume represents the proceedings of the 9th International Proton Transport Conference, "Mechanisms and Consequences of Proton Transport" held in Leura, Australia, August 19 -21, 200 I. This conference has been held since 1971 every 3 to 4 years with few exceptions in association with the Congress of the International Union of Physiological Sciences. The first meeting was held in Frankfurt, Germany, at the Max-Planck'Institute. Countries hosting the conference have been Germany (twice), Sweden (twice), India, Canada, USA, Great Britain, and now Australia. Over the past 30 years participants at these Proton Transport Conferences have been principal contributors to the major discoveries in the physiology, biochemistry and pharmacology of gastric acid secretion. These include development of the H2-receptor blockers, defining the signaling pathways for the regulation of acid secretion, identifying the gastric proton pump, discovery and development of proton pump inhibitory drugs, and elucidating the physiology and biochemistry of Helicobacter pylori.
In recent years rapid progress has been made in the areas of T cell and B cell biology, cell-cell and cell-matrix/stroma interactions. The use of isolated subunits of the T cell receptor invariant chains has been instrumental in defining their role in signal transduction and tyrosine phosphorylation. A role of src family phosphotyrosine kinases in T cell activation has been demonstrated and several phosphotyrosine kinase substrates have been identified and their functions characterized. Homologous recombinant techniques have led to the development of murine strains that lack CD4 or CD8 expression. These models are likely to be instrumental in studying the role of T cell subsets in autoimmune disorders, tissue transplant rejection and tumor rejection. A role of major histocompatibility complex I in the development of T cell subsets and NK cells has been defined. Recent data suggest a role of interaction between plasma membrane molecules of activated T helper cells and B cells, B cells primed with plasma membrane of activated T helper cells and cytokines, and interaction between bone marrow stromal cells and B cell progenitors and precursors, in the B cell development, proliferation, and differentiation. The structure and functions of adhesion molecules, especially with regard to signal transduction and homing events, are better defined.
Serpins (serine protease inhibitors) are a superfamily of proteins whose physiologi- cal action is primarily targeted to inhibiting serine proteases. There are instances where serpins are not inhibitors (and can carry steroid hormones for instance), yet key structural and functional elements found in all serpins are maintained in these 'non-inhibitor' ser- pins. Many serpins have well-described biological properties which influence pathophysi- ological events, including: antithrombin (historically called antithrombin III), ai-protease inhibitor (historically called ai-antitrypsin), and plasminogen activator inhibitor-I, just to mention a few. A deficiency or defect in antithrombin leads to venous thromboembolic disease, while a deficiency or defect in ai-protease inhibitor is associated with chronic obstructive pulmonary emphysema. In contrast, it has been suggested that increased levels of plasminogen activator inhibitor-l may be a predisposition to myocardial infarction. The list goes on for each of our own "favorite" serpin. The biological roles found for serpins are key participants in almost every physiological event. In other words, serine proteases are needed for many events in biology and the role of serpins to down regulate these pro- teases is essential. Thus, just using these three examples above for serpins and their patho- physiological roles reminds us that the medical costs to control such events is significant worldwide.
This monograph contains the proceedings from the Advanced Study Institute on "Vascular Endothelium: Physiological Basis of Clinical Problems" which took place in Corfu, Greece in June 1990. The meeting consisted of twenty-eight lectures, most of them adapted as full length papers in this volume, as well as numerous short oral and poster communications which are abstracted and also included in alphabetical order (pages 239-302). There were ninety-six participants from ten NATO and four other European countries. The meeting was the second in as many years dealing with a specific subject in Endothelial Cell biology. Following the 1988 discussion on "Receptors and Transduction Mechanisms", the present ASI recognized and tried to deal with the increasing overlap in interest between basic scientists studying endothelial cell functions and clinicians facing problems of known or suspected endothelial pathological involvement. As with any similar effort, we opted to be selective, rather than fail by trying to be inclusive, in the subjects covered. We chose to discuss diseases, such as atherosclerosis, sepsis, ARDS and stroke, based on their relevance to endothelial cell function and urgent need for new insights into their pathogenesis and treatment. Similarly, we examined endothelial cell functions by considering their relevance to disease and their potential for elucidating important pathologies. Obviously, some areas were covered superficially or not at all; this should not distract from their importance, but rather reflect on the constraints of time and -not at all negligibly -the bias of the organizing committee.
This book deals with the cellular biology, biochemistry and physiology of photoreceptors and their interactions with the second-order neurons, bipolar and horizontal cells. The focus is upon the contributions made by these neurons to vision. Thus the basic neurobiology of the outer retina is related to the visual process, and visual defects that could arise from abnormalities in this part of the retina are highlighted in the first 16 chapters. Since all vertebrate retinas have the same basic structure and physiological plan, examples are given from a variety of species, with an emphasis upon mammals, extending to human vision. The last four chapters approach the problem from the other end. This part of the book covers a range of clinical conditions involving visual abnormalities that are due to cellular defects in the outer retina. Although the contents of this book do not represent the proceedings of a conference, the concept arose at an international symposium on 'Recent Advances in Retinal Research' which was held at the International Marine Centre in Oristano, Sardinia. We hope that the book will give a coherent, up to date review of the neurobiology and clinical aspects of the outer retina and encourage further integration of these areas. Retinal neurobiology has been an intense field of investigation for several decades. More recently, it has seen significant advances with the application of modern techniques of cell and molecular biology.
Proceedings of an international symposium, held in Ulm, Germany, September 21-24, 1994
From the 19-29 May 1991 the NATO ASI Course PAsthma Treatment: A P Multidisciplinary Approach was held in Erice, on the rocky North West Coast of Sicily, facing the ancient Phoenician shore of the African Continent. Sixty NATO sponsored participants arriving from many different European Countries - Nato members and non - attended the course. Qualified researchers from Europe and the United States held extensive lectures, short meetings and small informal group discussions. Erice is a magical place which draws together people from different backgrounds and cultures under her Mediterrean charm, recreating the ancient Greek openair discussion atmosphere. And so, during the 10 days gathering, the extensive willingness of the senior investigators and the laudable enthusiasm of the younger participants was stimulated. All of the most recent findings in the biology and the pharmacology of Asthma were discussed, initially behind closed doors, to be unhurriedly continued along the alley ways of the "Cittadella della Scienza" , in Erice's small restaurants, and on her deserted beaches. The texts collected here are testimony to the high quality of the investigators contributions as well as their far reaching interests. I think that a Director of such a Course would be adequatly satisfied by merely considering the enthusiasm and high level involvement of every participant. He could not have been more satisfied after having considered the proceedings summerizing the scientific content of the meeting.
From within complex structures of organisms and cells down to the molecular level, biological processes all involve movement. Muscular fibers slide on each other to activate the muscle, as polymerases do along nucleic acids for replicating and transcribing the genetic material. Cells move and organize themselves into organs by recognizing each other through macromolecular surface-specific interactions. These recognition processes involve the mu tual adaptation of structures that rely on their flexibility. All sorts of conformational changes occur in proteins involved in through-membrane signal transmission, showing another aspect of the flexibility of these macromolecules. The movement and flexibility are inscribed in the polymeric nature of essential biological macromolecules such as proteins and nucleic acids. For instance, the well-defined structures formed by the long protein chain are held together by weak noncovalent interac tions that design a complex potential well in which the protein floats, permanently fluctuating between several micro- or macroconformations in a wide range of frequencies and ampli tudes. The inherent mobility of biomolecular edifices may be crucial to the adaptation of their structures to particular functions. Progress in methods for investigating macromolecular structures and dynamics make this hypothesis not only attractive but more and more testable.
The symposium on Acoustical Signal Processing in the Central Auditory System which was held in Prague on September 4--7, 1996 was the third in a series organized in Prague, after the Neuronal Mechanisms of Hearing symposium in 1980 and Auditory Pathway - Structure and Function symposium in 1987. Approximately 100 scientists regis tered for the symposium and presented 82 separate papers and posters. The present vol ume contains 53 of these contributions, mostly presented at the symposium as invited review papers. Several essential changes occurred since the previous meeting in 1987. In auditory neuroscience, recently developed methods opened new horizons in the investigation of the structure and function of the central auditory pathway. Methods like c-fos tracing tech niques and monoclonal antibodies for neurotransmitters and their receptors, like the intro duction of electrophysiological recording from brain slices have made possible new insights into the function of individual neurons and their interconnections, particularly in the cochlear nuclei and in the superior olivary complex. Integrative approaches towards understanding the central auditory function started to dominate in the field. It is not easy at the present time to differentiate between purely morphological and neurochemical ap proaches; similarly electrophysiological approaches are accompanied inevitably by behav ioral and psychophysical studies. The understanding of human brain function advanced significantly during the last several years. mainly due to the contribution of magneto encephalography. positron emission tomography and functional nuclear magnetic reso nance imaging.
One of the most impressive advances in the field of neuroscience over the last decade has been the accumulation of data on plasticity and regeneration in the nervous system of mammals. The book represents the contribution of a qroup of neuroscientists to this rapidly expanding field, through a Conference organized by the Institute of Developmental Neuroscience and Aging (IDNA). The meeting was held in Torino, Italy during April 1990 in honor of a great pioneer in the field of Neuroembryology, Professor Guido Filogamo. His introduction of the concept of neuroplasticity has had a significant impact on the study of neurobiology. This volume is divided into six sections, each focusing on one of the subject areas covered during the meeting Molecular and Cellular Aspects of Central and Peripheral Nervous System Development; Hormones,* Growth Factors, Heurotransmi tters, Xenobiotics and Development; In Vivo and in Vitro models of Development; Development and Regulation of Glia; Regeneration; and Aging.
Birds and reptiles have long fascinated investigators studying hearing and the auditory system. The highly evolved auditory inner ear of birds and reptiles shares many characteristics with the ear of mammals. Thus, the two groups are essential in understanding the form and function of the vertebrate and mammalian auditory systems. Comparative Hearing: Birds and Reptiles covers the broad range of our knowledge of hearing and acoustic communication in both groups of vertebrates. This volume addresses the many similarities in their auditory systems, as well as the known significant differences about hearing in the two groups. |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Didactic Strategies and Resources for…
Alfonso Garcia De La Vega
Hardcover
R6,117
Discovery Miles 61 170
Surveying with Geomatics and R
Luciana Sanches, Marcelo de Carvalho Alves
Hardcover
R2,906
Discovery Miles 29 060
|