![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Automotive technology
The survival of the Aeronautical Industries of Europe in the highly competitive World Aviation Market is strongly dependent on such factors as time-to-market of a new or derivative aircraft and on its manufacturing costs but also on the achievement of a competitive technological advantage by which an increased market share can be gained. Recognizing this, cooperative research is continuously encouraged and co-financed by the European Union in order to strengthen the scientific and technological base of the Aeronautical Industries thus providing - among others - the technological edge needed for survival. Corresponding targets of research within Area 3, Technologies for Transport Means, and here in particular Area 3A, Aeronautics Technologies, of the Industrial and Materials Technologies Program ( Brite -EuRam III, 1994 -1998) have been identified to be aircraft efficiency, cost effectiveness and environmental impact. Concerning aircraft efficiency - relevant to the present research - a reduction in aircraft drag of 10%, a reduction in aircraft fuel consumption of 30%, and a reduction in airframe, engine and system weight of 20% are envisaged. Meeting these objectives has, of course, also a strong positive impact on the environment.
Y. Fujimori, Symposium Programme Committee Chair, and Faculty Member, International Space University e-mail: [email protected] M.Rycroft, Faculty Member, International Space University e-mail: [email protected] N. Crosby, International Space University e-mail: [email protected] For the sixth annual ISU Symposium the theme was "Smaller Satellites: Bigger Business? Concepts, Applications and Markets for Micro/Nanosatellites in a New Information World." Thus, the Symposium addressed the crucial question: are small satellites the saviour of space programmes around the world It did this from the unique perspective of the International Space today? University - the interdisciplinary, international and intercultural perspective. This Symposium brought together a variety of people working on small satellites - engineers, scientists, planners, providers, operators, policy makers and business executives, together with representatives from regulatory bodies, from national and international organizations, and from the finance sector, and also entrepreneurs. Discussion and debate were encouraged, based on the papers presented and those published here.
The origins of turbulent flow and the transition from laminar to turbulent flow are among the most important unsolved problems of fluid mechanics and aerodynamics. Besides being a fundamental question of fluid mechanics, there are any number of applications for information regarding transition location and the details of the subsequent turbulent flow. The JUT AM Symposium on Laminar-Turbulent Transition, co-hosted by Arizona State University and the University of Arizona, was held in Sedona, Arizona. Although four previous JUT AM Symposia bear the same appellation (Stuttgart 1979, Novosibirsk 1984, Toulouse 1989, and Sendai 1994) the topics that were emphasized at each were different and reflect the evolving nature of our understanding of the transition process. The major contributions of Stuttgart 1979 centered on nonlinear behavior and later stages of transition in two-dimensional boundary layers. Stability of closed systems was also included with Taylor vortices in different geometries. The topics of Novosibirsk 1984 shifted to resonant wave interactions and secondary instabilities in boundary layers. Pipe- and channel-flow transition were discussed as model problems for the boundary layer. Investigations of free shear layers were presented and a heavy dose of supersonic papers appeared for the first time. The character of Toulouse 1989 was also different in that 3-D boundary layers, numerical simulations, streamwise vortices, and foundation papers on receptivity were presented. Sendai 1994 saw a number of papers on swept wings and 3-D boundary layers. Numerical simulations attacked a broader range of problems.
This volume includes versions of papers selected from those presented at the THIESEL 2000 Conference on Thermofluidynamic Processes in Diesel Engines, held at the Universidad Politecnica de Valencia, during the period of September th th 13 to 15 , 2000. The papers are grouped into seven thematic areas: State of the Art and Prospective, Fuels for Diesel Engines, Injection System and Spray Formation, Combustion and Pollutant Formation, Modelling, Experimental Techniques, and Air Management. These areas cover most of the technologies and research strategies that may allow Light Duty and Heavy Duty Diesel engines to comply with current and forthcoming emission standards, while maintaining or improving fuel consumption. The main objectives of the conference were to bring together ideas and experience from Industry and Universities to facilitate interchange of information and to promote discussion of future research and development needs. The technical papers emphasised the use diagnostic and simulation techniques and their relationship to engineering practice and the advancement of the Diesel engine. We hope that this approach, which proved to be successful at the Conference, is reflected in this volume. We thank all those who contributed to the success of the Conference, and particularly the members of the Advisory Committee who assessed abstracts and chaired many of the technical sessions. Weare also grateful to participants who presented their work or contributed to the many discussions. Finally, the Conference benefitted from financial support from the organisations listed below and we are glad to have this opportunity to record our gratitude.
This volume is a compendium of papers presented during the International Workshop on Air Traffic Management, which took place in Capri, Italy, on September 26-30, 1999. The workshop was organized by Italian National Research Council in co-operation with the University of Rome "Tor Vergata," and the Massachusetts Institute of Technology (MIT). This was the fifth in a series of meetings held periodically over a ten-year span for the purpose of encouraging an exchange of views and fmdings by scientists in the field of Air Traffic Management (A TM). The papers presented at the workshop dealt with a wide range of topics and covered different aspects that are currently important in Air Traffic Control and Air Traffic Management. This volume contains only a subset of the papers presented, namely the ones that addressed the main area emphasis in the workshop, new concepts and methods. The subject of the first two papers is Collaborative Decision Making (CDM), a concept which embodies, to a large extent, the new philosophy of partial decentralization and increased delegation of responsibilities to users in A TM operations. In the first of these papers Wambsganss describes the original CDM project and its initial implementation in the form of the Ground Delay Program Enhancements. He also provides a brief description of some of the tools that have been developed as part of the CDM effort and identifies future research and development requirements.
Shell structures are widely used in the fields of civil, mechanical, architectural, aeronautical, and marine engineering. Shell technology has been enhanced by the development of new materials and prefabrication schemes. Despite the mechanical advantages and aesthetic value offered by shell structures, many engineers and architects are relatively unacquinted with shell behaviour and design. This book familiarizes the engineering and architectural student, as well as the practicing engineer and architect, with the behaviour and design aspects of shell structures. Three aspects are presented: the Physical behaviour, the structural analysis, and the design of shells in a simple, integrated, and yet concise fashion. Thus, the book contains three major aspects of shell engineering: (1) physical understanding of shell behaviour; (2) use of applied shell theories; and (3) development of design methodologies together with shell design examples. The theoretical tools required for rational analysis of shells are kept at a modest level to give a sound grasp of the fundamentals of shell behaviour and, at the same time, an understanding of the related theory, allowing it to be applied to actual design problems. To achieve a physical understanding of complex shell behaviour, quantitative presentations are supplemented by qualitative discussions so that the reader can grasp the physical feeling' of shell behaviour. A number of analysis and detailed design examples are also worked out in various chapters, making the book a useful reference manual. This book can be used as a textbook and/or a reference book in undergraduate as well as graduate university courses in the fields of civil, mechanical, architectural, aeronautical, and materials engineering. It can also be used as a reference and design-analysis manual for the practicing engineers and architects. The text is supplemented by a number of appendices containing tables of shell analysis and design charts and tables.
The great bulk of the literature on aeroelasticity is devoted to linear models. The oretical work relies heavily on linear mathematical concepts, and experimental results are commonly interpreted by assuming that the physical model behaves in a linear manner. Nevertheless, significant work has been done in nonlinear aero elasticity, and one may expect this trend to accelerate for several reasons: our ability to compute has increased at an astonishing rate; as linear concepts have been assimilated widely, there is a natural increase in interest in the foundations of nonlinear modeling; and, finally, some phenomena long recognized to be of interest, but beyond the effective range of linear models, are now known to be essentially nonlinear in nature. In this volume, an exhaustive review of the literature is not attempted. Rather the emphasis is on fundamental ideas and a representative selection of problems. Despite obvious successes in research on problems of aeroelasticity and the existence of a broad literature, including a number of excellent monographs, up to now little attention has been devoted to a general nonlinear theory of interac tion. For the most part nonlinearity has been considered either solely in the description of the behavior of a shell or in the description of the motion of a gas."
This collection presents 49 contributions by engineers, architects, biologists, and applied mathematicians interested in deployable structures. Aerospace structures are currently at the leading edge, and this is reflected by a larger number of contributions covering the full spectrum of concepts, simulations, testing, and working systems.
Advanced Design Problems in Aerospace Engineering, Volume 1: Advanced Aerospace Systems presents six authoritative lectures on the use of mathematics in the conceptual design of various types of aircraft and spacecraft. It covers the following topics: design of rocket-powered orbital spacecraft (Miele/Mancuso), design of Moon missions (Miele/Mancuso), design of Mars missions (Miele/Wang), design of an experimental guidance system with a perspective flight path display (Sachs), neighboring vehicle design for a two-stage launch vehicle (Well), and controller design for a flexible aircraft (Hanel/Well). This is a reference book of interest to engineers and scientists working in aerospace engineering and related topics.
All typical and special modal and response analysis methods, applied within the frame of the design of spacecraft structures, are described in this book. It therefore addresses graduate students and engineers in the aerospace field.
Boeing's 737 is indisputably the most popular and arguably the safest commercial airliner in the world. But the plane had a lethal flaw, and only after several disastrous crashes and years of painstaking investigation was the mystery of its rudder failure solved. This book tells the story of how engineers and scientists finally uncovered the defect that had been engineered into the plane. One of its novel features is that it portrays the complex interaction of different experts and opposing interests in investigating and solving the mystery of this single crash.
This book deals mainly with the problems associated with the contamination of groundwater by MTBE and TBA, but ETBE is also considered. The book, written by recognized specialists in the field, is organized in sections covering state-of-the-art analytical methods, including specific isotopic analysis, occurrence in the environment, transport and degradation processes, treatment technologies and human health risks.
This volume features the contributions to the 15th Symposium of the STAB (German Aerospace Aerodynamics Association). Papers provide a broad overview of ongoing work in Germany, including high aspect ratio wings, low aspect ratio wings, bluff bodies, laminar flow control and transition, active flow control, hypersonic flows, aeroelasticity, aeroacoustics, mathematical fundamentals, numerical simulations, physical fundamentals, and facilities.
In Human Missions to Mars Donald Rapp looks at human missions to Mars from an engineering perspective. He begins by describing the pros and cons of robotic exploration versus human exploration and then examines the ideas for sending humans to Mars from the point of view of both the enthusiast and the skeptic. Chapter 2 describes how space missions are planned and how they may be achieved as a sequence of separate steps. Chapter 3 deals with the complex issues relating to the outward journey to Mars and the return leg. The author deals with propulsion systems and with the analysis of the various trajectories which may be utilized for such a mission. He divides mission into a number of stages: Earth s surface to low-Earth orbit (LEO); departing from LEO; Mars orbit insertion and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth orbit insertion and landing. Chapter 4 discusses a wide range of elements critical to a human Mars mission, including life support consumables, radiation effects and shielding, microgravity effects, abort options and mission safety, possible habitats on the Martian surface and aero assisted orbit insertion and entry decent and landing. For any human mission to the Red Planet the possible utilization of any resources indigenous to Mars would be of great value and such possibilities are discussed in Chapter 5. The use of indigenous resources on the Moon is described as a precursor to the availability of similar resources on Mars and issues such as fuelling Mars-bound craft from lunar resources, the use of lunar ferries, staging, assembly and refueling in near-Earth space are all discussed. The important applications arising from the transportation of hydrogen to Mars are also described. Chapter 6 deals with a range of previous Mars mission studies and the technologies they employed. Chapter 7 looks as how NASA is planning for its return to the Moon, and the use of the Moon as a stepping stone to Mars. Chapter 8 presents the author s detailed analysis of why, in his opinion, the current NASA approach will fail to send humans to Mars before 2080. The book concludes with three appendices describing the use of solar energy on the Moon and on Mars and the value of indigenous water on Mars."
Mechanics as a fundamental science in Physics and in Engineering deals with interactions of forces resulting in motion and deformation of material bodies. Similar to other sciences Mechanics serves in the world of Physics and in that of Engineering in a di?erent way, in spite of many and increasing inter- pendencies. Machines and mechanisms are for physicists tools for cognition and research, for engineers they are the objectives of research, according to a famous statement of the Frankfurt physicist and biologist Friedrich Dessauer. Physicists apply machines to support their questions to Nature with the goal of new insights into our physical world. Engineers apply physical knowledge to support the realization process of their ideas and their intuition. Physics is an analytical Science searching for answers to questions concerning the world around us. Engineering is a synthetic Science, where the physical and ma- ematical fundamentals play the role of a kind of reinsurance with respect to a really functioning and e?ciently operating machine. Engineering is also an iterative Science resulting in typical long-time evolutions of their products, but also in terms of the relatively short-time developments of improving an existing product or in developing a new one. Every physical or mathematical Science has to face these properties by developing on their side new methods, new practice-proved algorithms up to new fundamentals adaptable to new technological developments. This is as a matter of fact also true for the ?eld of Mechanics.
''It is true that "Nothing is more practical than a theory" Provided - however - That the assumptions on which the theory is founded Are well understood. - But, indeed, engineering experience shows that "Nothing can be more disastrous than a theory When applied to a real problem Outside of the practicailimits of the assumptions made," Because of an homonymous identity With the problem under consideration. " (J. T. P. ) The primary objective of this work is to present the theories of analytical and optical isodynes and the related measurement procedures in a manner com patible with the modem scientific methodology and with the requirements of modem technology pertaining to the usefulness of the stress analysis proce dures. The selected examples illustrate some major theses of this work and demonstrate the particular efficiency of the isodyne methods in solving the technologically important problems in fracture mechanics and mechanics of composite structures including new materials. To satisfy this objective it was necessary to depart from the common practice of presenting theories and techniques of experimental methods as a compatible system of equations and procedures without mentioning the tacitly accepted assumptions and their influence on the theoretical admissibility of analytical expressions and the reliability of the experimental or analytical results. It was necessary to design a more general frame of reference which could allow to assess the scientific correctness of isodyne methods and the reliability of experimental results."
Multiphase thermal systems have numerous applications in aerospace, heat-exchange, transport of contaminants in environmental systems, and energy transport and conversion systems. A reduced - or microgravity - environment provides an excellent tool for accurate study of the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.
Material technology has become so diversified in theories and the construction of novel microstructures that the researchers and practitioners are drifting further apart. This book is based on material presented at an International Symposium in Xanthi, Greece in July 1989. The symposium attracted a group of individual engineers and scientists from the East and West who tackled the question of why particular manipulations of a given material have particular effects. Emphasis is laid on the strain energy function because of the versatile role it plays in mechanics and physics. It has been used successfully not only in predicting the failure of solids but also in formulating constitutive relations in continuum mechanics. The material presented falls within the areas of: Fundamentals of Strain Energy Density, Damage Analysis on Strain Energy Density, Strain Energy Density as Failure Criterion, Applications, and Composites.
Dealing with a wide range of topics and covering different aspects of current importance in ATM, the papers place particular emphasis on automation and application of mathematical models and computational algorithms for ATM systems. The volume thus offers readers a summary of recent progress in such important areas as new operational concepts for automated ATM, evolution of traffic characteristics, ground-holding algorithms, ATC simulation facilities and a number of other aspects of ATC flow management.
T~~botogy and Vynam~c~ a~e u6uatty con6~de~ed a~ 6epa~ate 6ubject6. Acco~d~ngty, ~e6ea~che~6 ~n th06e two 6~etd6 6etdom meet, de6p~te, the 6act that the~e ~6 a con~~de~a- bie ove~tap 06 ~nte~e~t~ namety when deat~ng w~th ~otat~ng mach~ne~y cond~t~on mon~to~~ng. Rotat~ng mach~ne~ a~e u~ed ~n atmo~t eve~y ~ndu~t~~at appt~cat~on namety m~t~ta~y, powe~ gene~at~on, chem~cat , 600d p~oce6~~ng, etc. Any powe~ u~e~ o~ gene~at~ng ~y~tem ~6 ba6ed on ~otat~ng mach~ne~ 6uch a~ tu~b~ne~, 6an~, pump6, comp~e~~o~~, etc. mak~ng the ~c~ent~6ic e660~t~ in the 6~etd 06 ~otat~ng mach~ne~y in ~ecent yea~~ wett ju~t~6~ed. Fa~tu~e 06 ~otat~ng component~, due to wea~ andlo~ v~b~a- t~on p~obtem~, ~~ 6t~tt d~66~cutt to p~ed~ct and ~e~utt~ 6~eQuentty 6~om ~nadeQuaxe de~~gn. Thi~ i~ o~iginaxed by ~mpe~6ecx knowtedge 06 the acxuat behav~ou~ 06 xhe ~y~tem~ Ve~pixe xhe p~og~e~~ achieved in xhe 6ietd~ 06 x~ibotogy and dynamic~, a tack 06 communicaxion ctea~ty ~xitl exi~x~ between xh06e ~nvolved in de~ign and developmenx ~n ind- x~y and ~e~ea~ch team~ in un~ve~~ixie6 and othe~ li~hmenx~. B~inging togethe~ x~ibotog~6t~ and dynam~c~6t~ ~n o~de~ xo cont~ibute xo inc~ea6e p~og~e~6 ~n both 6ietd~ wa~ the main object~6 06 the NATO AVVANCEV STUVY INSTITUTE (ASI) on "VIBRATION ANV WEAR VAMAGE IN HIGH SPEW ROTATING MACHINERY" hetd ~n T~oia, Po~xugat, 10xh to 22nd Ap~il 1989, and o~ga- n~zed by CEMUL-Cente~ 06 Mechan~c~ and Maxe~ial~ 06 the Technicat Un~ve~~~ty 06 Li~bon.
Adaptive Structural Systems with Piezoelectric Transducer Circuitry provides a comprehensive discussion on the integration of piezoelectric transducers with electrical circuitry for the development and enhancement of adaptive structural systems. Covering a wide range of interdisciplinary research, this monograph presents a paradigm of taking full advantage of the two-way electro-mechanical coupling characteristics of piezoelectric transducers for structural control and identification in adaptive structural systems. Presenting descriptions of algorithm development, theoretical analysis and experimental investigation, engineers and researchers alike will find this a valuable reference.
In-Vehicle Corpus and Signal Processing for Driver Behavior is comprised of expanded papers from the third biennial DSPinCARS held in Istanbul in June 2007. The goal is to bring together scholars working on the latest techniques, standards, and emerging deployment on this central field of living at the age of wireless communications, smart vehicles, and human-machine-assisted safer and comfortable driving. Topics covered in this book include: improved vehicle safety; safe driver assistance systems; smart vehicles; wireless LAN-based vehicular location information processing; EEG emotion recognition systems; and new methods for predicting driving actions using driving signals. In-Vehicle Corpus and Signal Processing for Driver Behavior is appropriate for researchers, engineers, and professionals working in signal processing technologies, next generation vehicle design, and networks for mobile platforms.
Deep Space Craft opens the door to interplanetary flight. It looks at this world from the vantage point of real operations on a specific mission, and follows a natural trail from the day-to-day working of this particular spacecraft, through the functioning of all spacecraft to the collaboration of the various disciplines to produce the results for which a spacecraft is designed. These results are of course mostly of a scientific nature, although a small number of interplanetary missions are also flown primarily to test and prove new engineering techniques. The author shows how, in order to make sense of all the scientific data coming back to Earth, the need for experiments and instrumentation arises, and follows the design and construction of the instruments through to their placement and testing on a spacecraft prior to launch. Examples are given of the interaction between an instrument's science team and the mission's flight team to plan and specify observations, gather and analyze data in flight, and finally present the results and discoveries to the scientific community. This highly focused, insider's guide to interplanetary space exploration uses many examples of previous and current endeavors. It will enable the reader to research almost any topic related to spacecraft and to seek the latest scientific findings, the newest emerging technologies, or the current status of a favorite flight. In order to provide easy paths from the general to the specific, the text constantly refers to the Appendices. Within the main text, the intent is general familiarization and categorization of spacecraft and instruments at a high level, to provide a mental framework to place in context and understand any spacecraft and any instrument encountered in the reader's experience. Appendix A gives illustrated descriptions of many interplanetary spacecraft, some earth-orbiters and ground facilities to reinforce the classification framework. Appendix B contains illustrated detailed descriptions of a dozen scientific instruments, including some ground-breaking engineering appliances that have either already been in operation or are poised for flight. Each instrument's range of sensitivity in wavelengths of light, etc, and its physical principle(s) of operation is described. Appendix C has a few annotated illustrations to clarify the nomenclature of regions and structures in the solar system and the planets' ring systems, and places the solar system in context with the local interstellar environment.
Despite a long history of almost 180 years stretching back to the times of Carnot and, later, Clausius and Lord Kelvin, amongst others following him, the subject of thermodynamics has not as yet seen its full maturity, in the sense that the theory of irreversible processes has remained incomplete. The works of L. Onsager, J. Meixner, I. Prigogine on the thermodyn- ics of linear irreversible processes are, in effect, the early efforts toward the desired goal of giving an adequate description of irreversible processes, but their theory is confined to near-equilibrium phenomena. The works in recent years by various research workers on the extension of the aforem- tioned thermodynamic theory of linear irreversible processes are further efforts toward the goal mentioned. The present work is another of such efforts and a contribution to the subject of generalizing the thermodyn- ics of reversible processes, namely, equilibrium thermodynamics, to that of irreversible processes-non-equilibrium thermodynamics, without being restricted to linear irreversible processes. In this context the terms 'far - moved from equilibrium' is often used in the literature, and such states of macroscopic systems and non-linear irreversible phenomena in them are the objects of interest in this work. The thermodynamics of processes, either reversible or irreversible, is a continuum mechanical theory of matter and energy and their exchange between different parts of the system, and as such it makes no direct r- erence to the molecules constituting the substance under consideration.
Spaceflight Life Support and Biospherics is the introduction to space life support systems and artificial ecosystems that has so far been lacking. It is a source of information for everyone involved in the life support system design and development process - engineers, scientists, and students - as well as all those who are simply interested in this existing discipline. The structure of this book is such that it gives step-by-step answers to the basic questions concerning life support systems on any scale - from small microbial systems to the Earth's biosphere: Why life support system development and biosphere research? How does our natural life support system, the biosphere, work? What are the environmental conditions for life support systems in space? What are the fundamental terms and requirements of life support? Which physicochemical life support subsystems currently exist? Which are the potential bioregenerative life support technologies of the future? What are life support systems of future planetary habitats going to look like? What are the experiences of the largest artificial ecosystem - Biosphere 2? What are the potential terrestrial benefits of life support development? GBP/LISTGBP |
![]() ![]() You may like...
Every Day Is An Opening Night - Our…
Des & Dawn Lindberg
Paperback
![]()
|