![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Automotive technology
The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA."
This textbook deals with optimization of dynamic systems. The motivation for undertaking this task is as follows: There is an ever increasing need to produce more efficient, accurate, and lightweight mechanical and electromechanical de vices. Thus, the typical graduating B.S. and M.S. candidate is required to have some familiarity with techniques for improving the performance of dynamic systems. Unfortunately, existing texts dealing with system improvement via optimization remain inaccessible to many of these students and practicing en gineers. It is our goal to alleviate this difficulty by presenting to seniors and beginning graduate students practical efficient techniques for solving engineer ing system optimization problems. The text has been used in optimal control and dynamic system optimization courses at the University of Deleware, the University of Washington and Ohio University over the past four years. The text covers the following material in a straightforward detailed manner: * Static Optimization: The problem of optimizing a function that depends on static variables (i.e., parameters) is considered. Problems with equality and inequality constraints are addressed. * Numerical Methods: Static Optimization: Numerical algorithms for the solution of static optimization problems are presented here. The methods presented can accommodate both the unconstrained and constrained static optimization problems. * Calculus of Variation: The necessary and sufficient conditions for the ex tremum of functionals are presented. Both the fixed final time and free final time problems are considered.
Spaceflight Life Support and Biospherics is the introduction to space life support systems and artificial ecosystems that has so far been lacking. It is a source of information for everyone involved in the life support system design and development process - engineers, scientists, and students - as well as all those who are simply interested in this existing discipline. The structure of this book is such that it gives step-by-step answers to the basic questions concerning life support systems on any scale - from small microbial systems to the Earth's biosphere: Why life support system development and biosphere research? How does our natural life support system, the biosphere, work? What are the environmental conditions for life support systems in space? What are the fundamental terms and requirements of life support? Which physicochemical life support subsystems currently exist? Which are the potential bioregenerative life support technologies of the future? What are life support systems of future planetary habitats going to look like? What are the experiences of the largest artificial ecosystem - Biosphere 2? What are the potential terrestrial benefits of life support development? GBP/LISTGBP
Due to its extensive applications in stealth technology, much of the research effort in radar absorbing materials (RAM) has remained classified. As is the wont with classified topics, it has resulted in much awe and unfounded speculation. The aim of this book is to demystify this topic. The book in hand is concise but complete in itself. The attention of the readers is first drawn towards the historical evolution of RAM to emphasize that the elementary principles of electromagnetics lead to the fundamental concepts of RAM. These also form the basis for further mathematical analysis and design of RAM. The performance plots for the various RAM designs, to the extent possible, are taken with respect to power reflection; this should facilitate comparison of their relative performances. In order to further induce the reader to take the first step towards RAM design, we have included the relevant computer codes in a companion diskette. This would enable the reader to try out elementary designs on his own. * .EXE files should facilitate ready execution of codes on most DOS based computing platforms. The corresponding source codes with comments are also included as * .FOR files. The reader may wish to modify some of these codes for examining RAM design algorithms further. We welcome comments from the reader on these codes.
The Joint Institute for Aeronautics and Acoustics at Stanford University was established in October 1973 to provide an academic environment for long-term cooperative research between Stanford and NASA Ames Research Center. Since its establishment, the Institute has conducted theoretical and experimental work in the areas of aerodynamics, acoustics, fluid mechanics, flight dynamics, guidance and control, and human factors. This research has involved Stanford faculty, research associates, graduate students, and many distinguished visitors in collaborative efforts with the research staff of NASA Ames Research Center. The occasion of the Institute's tenth anniversary was used to reflect back on where that research has brought us, and to consider where our endeavors should be directed next. Thus, an International Symposium was held to review recent advances in the fields relevant to the activities of the Institute and to discuss the areas of research to be undertaken in the future. This anniversary was also chosen as an opportunity to honor one of the Institute's founders and its director, Professor Krishnamurty Karamcheti. It has been his crea tive inspiration that has provided the ideal research environment at the Joint Institute."
This book focuses on the interrelationship of social, technical, and organizational aspects of and related to the product development process. It originated from activities in practice in industry and research laboratories. In order to ensure relative autonomy from the short-term economic interests of a given industrial branch or specific company, the research for this work was first conducted in pursuit of a PhD thesis intended to provide practice-oriented results. With the ansatz practice - theory - practice, a generalizable approach was achieved. It then evolved to cover additional issues brought forth by recent cases in the aerospace industry, among others. A combination of scientific methodologies is used to focus on the psychological factors that influence the quality of technical product development processes. The basic framework is provided by the grounded theory-a qualitative approach, in which data was not only collected by this author but is extended to cases from the history of technology described in the published literature. The inclusion of historical cases is possible, thanks to the availability of sufficiently detailed descriptions for examination in terms of the grounded theory principles. They appear in the Appendix. Cases cited were verified by comparing them with contrasting viewpoints from various sources. I was able to examine and complement some cases by contacting persons associated with the programs analyzed. Quantitative studies are also integrated in this research to verify the elements resulting from the grounded theory integration.
The origins of turbulent flow and the transition from laminar to turbulent flow are among the most important unsolved problems of fluid mechanics and aerodynamics. Besides being a fundamental question of fluid mechanics, there are any number of applications for information regarding transition location and the details of the subsequent turbulent flow. The JUT AM Symposium on Laminar-Turbulent Transition, co-hosted by Arizona State University and the University of Arizona, was held in Sedona, Arizona. Although four previous JUT AM Symposia bear the same appellation (Stuttgart 1979, Novosibirsk 1984, Toulouse 1989, and Sendai 1994) the topics that were emphasized at each were different and reflect the evolving nature of our understanding of the transition process. The major contributions of Stuttgart 1979 centered on nonlinear behavior and later stages of transition in two-dimensional boundary layers. Stability of closed systems was also included with Taylor vortices in different geometries. The topics of Novosibirsk 1984 shifted to resonant wave interactions and secondary instabilities in boundary layers. Pipe- and channel-flow transition were discussed as model problems for the boundary layer. Investigations of free shear layers were presented and a heavy dose of supersonic papers appeared for the first time. The character of Toulouse 1989 was also different in that 3-D boundary layers, numerical simulations, streamwise vortices, and foundation papers on receptivity were presented. Sendai 1994 saw a number of papers on swept wings and 3-D boundary layers. Numerical simulations attacked a broader range of problems.
This collection presents 49 contributions by engineers, architects, biologists, and applied mathematicians interested in deployable structures. Aerospace structures are currently at the leading edge, and this is reflected by a larger number of contributions covering the full spectrum of concepts, simulations, testing, and working systems.
Advanced Design Problems in Aerospace Engineering, Volume 1: Advanced Aerospace Systems presents six authoritative lectures on the use of mathematics in the conceptual design of various types of aircraft and spacecraft. It covers the following topics: design of rocket-powered orbital spacecraft (Miele/Mancuso), design of Moon missions (Miele/Mancuso), design of Mars missions (Miele/Wang), design of an experimental guidance system with a perspective flight path display (Sachs), neighboring vehicle design for a two-stage launch vehicle (Well), and controller design for a flexible aircraft (Hanel/Well). This is a reference book of interest to engineers and scientists working in aerospace engineering and related topics.
Transport is very important for the economy and our welfare. However, transport also causes a lot of problems, including air pollution. Such problems should be taken into account, when making decisions. A prerequisite for doing so is, that the impacts are known, quantitatively measured and allocated to the different activities in transport. Furthermore, they should be transformed into monetary units to be used as a basis for cost-benefit analyses or as an aid for setting taxes and charges, that reflect the external costs. This book describes a methodology for calculating impacts of transport activities and external costs caused by air pollution and presents numerous applications of this methodology for different transport technologies, locations and policy case studies. The approach has been developed and results have been calculated within the research project 'ExternE Core/Transport', financed to a large extent by the European Commission, Directorate General Research. We would like to thank especially Pierre Vallette and Pekka Jarviletho from the EC for their advice and support. A considerable number of experts with expertise in the different disciplines of this highly interdisciplinary work contributed to this book. The editors would like to thank the authors (see list on p. XV) for their contributions; it is especially remarkable, that the authors helped to make this book an integrated whole instead of a number of independent contributions.
This book is devoted to the PSI method. Its appearance was a reaction to the unsatisfactory situation in applications of optimization methods in engineering. After comprehensive testing of the PSI method in various fields of machine engineering it has become obvious that this method substantially surpasses all other available techniques in many respects. It has now become known that the PSI method is successfully used not only in machine design, at which it was initially aimed, but also in polymer chemistry, pharmacy, nuclear energy, biology, geophysics, and many other fields of human activity. To all appearances this method has become so popular for its potential of taking into account the specific features of applied optimization better than other methods, being, at the same time, comparatively simple and friendly, and because, unlike traditional optimization methods which are intended only for searching for optimal solutions, the PSI method is also aimed at correctly formulating engineering optimization problems. One well-known aircraft designer once said, "To solve an optimization problem in engineering means, first of all, to be able to state this problem properly." In this sense the PSI method has no competitors. Although this method has been presented in Russia in numerous papers and books, Western readers have had the opportunity to familiarize themselves with this method only recently (Ozernoy 1988; Lieberman 1991; Stadler and Dauer 1992; Dyer, Fishburn, Steuer, Wallenius, and Zionts 1992; Steuer and Sun 1995, etc. ).
Since 1995 the annual international forum on Advanced Microsystems for Automotive Applications (AMAA) has been held in Berlin. The event offers a unique opportunity for microsystems component developers, system suppliers and car manufacturers to show and to discuss competing technological approaches of microsystems based solutions in vehicles. The book accompanying the event has demonstrated to be an efficient instrument for the diffusion of new concepts and technology results. The present volume including the papers of the AMAA 2005 gives an overview on the state-of-the-art and outlines imminent and mid-term R&D perspectives. The 2005 publication reflects - as in the past - the current state of discussions within industry. More than the previous publications, the AMAA 2005 "goes back" to the technological requirements and indispensable developments for fulfilling the market needs. The large part of contributions dealing with sensors as well as "sensor technologies and data fusion" is exemplary for this tendency. In this context a paradigm shift can be stated. In the past the development focused predominantly on the detection and processing of single parameters originating from single sensors. Today, the challenge increasingly consists in getting information of complex situations with a series of variables from different sensors and in evaluating this information. Smart integrated devices using the information deriving from the various sensor sources will be able to describe and assess a traffic situation or behaviour much faster and more reliable than a human being might be able to do. Additional information is available on www.amaa.de
The survival of the Aeronautical Industries of Europe in the highly competitive World Aviation Market is strongly dependent on such factors as time-to-market of a new or derivative aircraft and on its manufacturing costs but also on the achievement of a competitive technological advantage by which an increased market share can be gained. Recognizing this, cooperative research is continuously encouraged and co-financed by the European Union in order to strengthen the scientific and technological base of the Aeronautical Industries thus providing - among others - the technological edge needed for survival. Corresponding targets of research within Area 3, Technologies for Transport Means, and here in particular Area 3A, Aeronautics Technologies, of the Industrial and Materials Technologies Program ( Brite -EuRam III, 1994 -1998) have been identified to be aircraft efficiency, cost effectiveness and environmental impact. Concerning aircraft efficiency - relevant to the present research - a reduction in aircraft drag of 10%, a reduction in aircraft fuel consumption of 30%, and a reduction in airframe, engine and system weight of 20% are envisaged. Meeting these objectives has, of course, also a strong positive impact on the environment.
Embedded systems encompass a variety of hardware and software components which perform specific functions in host systems, for example, satellites, washing machines, hand-held telephones and automobiles. Embedded systems have become increasingly digital with a non-digital periphery (analog power) and therefore, both hardware and software codesign are relevant. The vast majority of computers manufactured are used in such systems. They are called embedded' to distinguish them from standard mainframes, workstations, and PCs. Athough the design of embedded systems has been used in industrial practice for decades, the systematic design of such systems has only recently gained increased attention. Advances in microelectronics have made possible applications that would have been impossible without an embedded system design. Embedded System Applications describes the latest techniques for embedded system design in a variety of applications. This also includes some of the latest software tools for embedded system design. Applications of embedded system design in avionics, satellites, radio astronomy, space and control systems are illustrated in separate chapters. Finally, the book contains chapters related to industrial best-practice in embedded system design. Embedded System Applications will be of interest to researchers and designers working in the design of embedded systems for industrial applications.
Y. Fujimori, Symposium Programme Committee Chair, and Faculty Member, International Space University e-mail: [email protected] M.Rycroft, Faculty Member, International Space University e-mail: [email protected] N. Crosby, International Space University e-mail: [email protected] For the sixth annual ISU Symposium the theme was "Smaller Satellites: Bigger Business? Concepts, Applications and Markets for Micro/Nanosatellites in a New Information World." Thus, the Symposium addressed the crucial question: are small satellites the saviour of space programmes around the world It did this from the unique perspective of the International Space today? University - the interdisciplinary, international and intercultural perspective. This Symposium brought together a variety of people working on small satellites - engineers, scientists, planners, providers, operators, policy makers and business executives, together with representatives from regulatory bodies, from national and international organizations, and from the finance sector, and also entrepreneurs. Discussion and debate were encouraged, based on the papers presented and those published here.
This volume contains the proceedings of the CEASlDragNet European Drag Reduction Conference held on 19-21 June 2000 in Potsdam, Germany. This conference, succeeding the First and Second European Forum on Laminar Flow Technology 1992 and 1996 respectively, was initiated by the European Drag Reduction Network (DragNet) and organised by DGLR (Deutsche Gesellschaft fUr Luft- und Raumfahrt - Lilienthal Oberth e. V. ) under the auspices ofCEAS (Confederation of European Aerospace Societies). The development of aerodynamic drag reduction technologies is driven by predictions of remarkable fuel savings, promising substantial improvements not only of aircraft efficiency but also of environmental compatibility. However, considerable efforts on an European scale are needed in order to develop, qualifY and demonstrate the means for their practical realisation. The primary aim of this conference was to provide a comprehensive survey of the current status of research, development and application in all disciplines of aerodynamic drag re- duction including laminar flow technology, adaptive wing concepts, turbulence and se- paration control, induced drag reduction and supersonic flow aspects. Besides aerodynamic topics the Call for Papers addressed also interdisciplinary aspects of design & system inte- gration, structures, materials, manufacturing, operations and maintenance. The Programme Committee (PC), responsible for the scientific preparation of the conference, consisted of CEAS representatives and DragNet board members (see following page).
This volume includes versions of papers selected from those presented at the THIESEL 2000 Conference on Thermofluidynamic Processes in Diesel Engines, held at the Universidad Politecnica de Valencia, during the period of September th th 13 to 15 , 2000. The papers are grouped into seven thematic areas: State of the Art and Prospective, Fuels for Diesel Engines, Injection System and Spray Formation, Combustion and Pollutant Formation, Modelling, Experimental Techniques, and Air Management. These areas cover most of the technologies and research strategies that may allow Light Duty and Heavy Duty Diesel engines to comply with current and forthcoming emission standards, while maintaining or improving fuel consumption. The main objectives of the conference were to bring together ideas and experience from Industry and Universities to facilitate interchange of information and to promote discussion of future research and development needs. The technical papers emphasised the use diagnostic and simulation techniques and their relationship to engineering practice and the advancement of the Diesel engine. We hope that this approach, which proved to be successful at the Conference, is reflected in this volume. We thank all those who contributed to the success of the Conference, and particularly the members of the Advisory Committee who assessed abstracts and chaired many of the technical sessions. Weare also grateful to participants who presented their work or contributed to the many discussions. Finally, the Conference benefitted from financial support from the organisations listed below and we are glad to have this opportunity to record our gratitude.
This text is intended for use as an advanced course in either rotordynamics or vibration at the graduate level. This text has mostly grown out of the research work in my laboratory and the lectures given to graduate students in the Mechanical Engineering Department, KAIST. The text contains a variety of topics not normally found in rotordynamics or vibration textbooks. The text emphasizes the analytical aspects and is thus quite different from conventional rotordynamics texts; potential readers are expected to have a firm background in elementary rotordynamics and vibration. In most previously published rotordynamics texts, the behavior of simple rotors has been of a primary concern, while more realistic, multi-degree-f-freedom or continuous systems are seldom treated in a rigorous way, mostly due to the difficulty of a mathematical treatment of such complicated systems. When one wanted to gain a deep insight into dynamic phenomena of complicated rotor systems, one has, in the past, either had to rely on computational techniques, such as the transfer matrix and finite element methods, or cautiously to extend ideas learned from simple rotors whose analytical solutions are readily available. The former methods are limited in the interpretation of results, since the calculations relate only to the simulated case, not to more general system behavior. Ideas learned from simple rotors can, fortunately, often be extended to many practical rotor systems, but there is of course no guarantee of their validity.
Shell structures are used in all phases of structures, from space vehicles to deep submergence hulls, from nuclear reactors to domes on sport arenas and civic buildings. With new materials and manufacturing methods, curved thin walled structures are being used increasingly. This text is a graduate course in the theory of shells. It covers shells of isotropic materials, such as metal alloys and plastics, and shells of composite materials, such as fibre reinforced polymer, metal or ceramic matrix materials. It provides the essential information for an understanding of the underlying theory, and solution of some of the basic problems. It also provides a basis to study the voluminous shell literature. Beyond being primarily a textbook, it is intended also for self study by practising engineers who would like to learn more about the behaviour of shells. The book has two parts: Part I deals with shells of isotropic materials. In this part the mathematical formulations are introduced involving curvilinear coordinates. The techniques of solutions and resulting behavior is compared to planar thin walled isotropic structures such as plates and beams. Part II then treats the behavior of shells, involving anisotropic composite materials, so widely used today. The analysis involves the complications due to the many elastic constants, effects of transverse shear deformation, thermal thickening and offer effects arising from the properties of composite materials.
Shell structures are widely used in the fields of civil, mechanical, architectural, aeronautical, and marine engineering. Shell technology has been enhanced by the development of new materials and prefabrication schemes. Despite the mechanical advantages and aesthetic value offered by shell structures, many engineers and architects are relatively unacquinted with shell behaviour and design. This book familiarizes the engineering and architectural student, as well as the practicing engineer and architect, with the behaviour and design aspects of shell structures. Three aspects are presented: the Physical behaviour, the structural analysis, and the design of shells in a simple, integrated, and yet concise fashion. Thus, the book contains three major aspects of shell engineering: (1) physical understanding of shell behaviour; (2) use of applied shell theories; and (3) development of design methodologies together with shell design examples. The theoretical tools required for rational analysis of shells are kept at a modest level to give a sound grasp of the fundamentals of shell behaviour and, at the same time, an understanding of the related theory, allowing it to be applied to actual design problems. To achieve a physical understanding of complex shell behaviour, quantitative presentations are supplemented by qualitative discussions so that the reader can grasp the physical feeling' of shell behaviour. A number of analysis and detailed design examples are also worked out in various chapters, making the book a useful reference manual. This book can be used as a textbook and/or a reference book in undergraduate as well as graduate university courses in the fields of civil, mechanical, architectural, aeronautical, and materials engineering. It can also be used as a reference and design-analysis manual for the practicing engineers and architects. The text is supplemented by a number of appendices containing tables of shell analysis and design charts and tables.
This volume is a compendium of papers presented during the International Workshop on Air Traffic Management, which took place in Capri, Italy, on September 26-30, 1999. The workshop was organized by Italian National Research Council in co-operation with the University of Rome "Tor Vergata," and the Massachusetts Institute of Technology (MIT). This was the fifth in a series of meetings held periodically over a ten-year span for the purpose of encouraging an exchange of views and fmdings by scientists in the field of Air Traffic Management (A TM). The papers presented at the workshop dealt with a wide range of topics and covered different aspects that are currently important in Air Traffic Control and Air Traffic Management. This volume contains only a subset of the papers presented, namely the ones that addressed the main area emphasis in the workshop, new concepts and methods. The subject of the first two papers is Collaborative Decision Making (CDM), a concept which embodies, to a large extent, the new philosophy of partial decentralization and increased delegation of responsibilities to users in A TM operations. In the first of these papers Wambsganss describes the original CDM project and its initial implementation in the form of the Ground Delay Program Enhancements. He also provides a brief description of some of the tools that have been developed as part of the CDM effort and identifies future research and development requirements.
This Volume contains the Proceedings of a French - Australian workshop held in Melbourne, Australia from 3-6 December 2001. Entitled "Coupling of Fluids, Structures and Waves in Aeronautics (CFSWA)", the workshop was principally organised by CSIRO Mathematical and Information Sciences, Dassault Aviation and CNRS. The main purpose was to explore new computational methods and tools for efficient multi-disciplinary design in aero- nautics. This enterprise strongly depends on modelling of coupled disciplines and development of associated multi-disciplinary simulation tools. As an example of the requirements, the original logo for the workshop illustrated coupled aeroelas- ticity, scattered radar waves and high lift problems. Optimisation is required with respect to mUltiple objectives under conflict. Among the many challenges to be addressed are mathematical, numerical and en- gineering problems involving coupled flows, structures and waves. Future prog- ress on these topics strongly depends on the physical and mathematical modelling of coupled disciplines and the development of associated multi-disciplinary simu- lation tools. Strong couplings require appropriate exchanges of different kinds of information: physical and geometrical description of models, coupling of Partial Differential Equations (PDEs) at interfaces, and specification of boundary condi- tions or multi-objective functions in optimisation or control problems. Validation of multi-physics software also requires ever more efficient and accurate graphic visualisation tools representing experimental and computational data stored in da- tabases.
This book is addressed to designers of photodetectors and photodetecting systems, designers of focal plane arrays, charge-coupled devices, specialists in IR technologies, designers of optoelectronic detecting, guiding and tracking systems, systems for IR direction finders, lidars, lightwave communication systems, IR imagers. All these specialists are united by one common purpose: they are all striving to catch the weakest possible optical signal. The most important characteristic of photosensitive devices is their detectivity, which determines the lowest level of optical signal they are able to detect above the noise level. These threshold characteristics define the most important tactical and technical parameters of the entire optoelectronic system, such as its range, resolution, precision. The threshold characteristics of optoelectronic system depend on many of its components; all designers agree, however, that the critically responsible part of the system is the photodetector [1]. By the end of the 1960s the physicists and the engineers were able to overcome many obstacles and to create photodetectors (at least single-element or few-element ones) which covered all the main optical bands (0. 4 . . . 2,2 . . . 3, 3 . . . 5,8 . . . 14 J. . Lm), carried out the detection almost without any loss (the quantum yield being as high as 0. 7 . . . 0. 9), and reduced the noise level to the lowest possible limit.
Over the past decade, the transport industry has become an increasingly popular scapegoat for polluting the environment with emissions and noise. Therefore, additional transport infrastructure investments, especially in road transport, are becoming more and more contentious. Conversely, the advocates of free trade stress the importance of transport to enhance economic growth and subsequently the standards of living. Thus, political decision makers and business people alike are facing the challenge of reconciling these conflicting ideas. Though being one of the most prominent topics in public discussion, hard facts are still rare. In order to analyze the question from a different perspective, this book sets out to combine different approaches from economics as well as business administration to stimulate scientific discourse and to support decision-makers in their efforts to ameliorate the situation. The first part of this book contributes to the empirics of the relationship between transport and economic growth, or more specifically, whether "decoupling" of transport and economic growth appears possible. For this purpose previously unavailable regional data for Italy and Germany were collected and analyzed. The results indicate that transport makes an important contribution to economic growth. Therefore, the second part of this book goes into more detail. Given the economic importance of transport and the resistance against the expansion of the transport infrastructure, it is essential to make efficient use of the already existing transportation network. For this purpose the author investigates which characteristics of transport are perceived as most important by decision makers, applying an adaptive conjoint analysis. The results show that transport quality in terms of timeliness, reliability, etc. seems to be at least as important as the monetary transport costs.
Boeing's 737 is indisputably the most popular and arguably the safest commercial airliner in the world. But the plane had a lethal flaw, and only after several disastrous crashes and years of painstaking investigation was the mystery of its rudder failure solved. This book tells the story of how engineers and scientists finally uncovered the defect that had been engineered into the plane. One of its novel features is that it portrays the complex interaction of different experts and opposing interests in investigating and solving the mystery of this single crash. |
![]() ![]() You may like...
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R4,223
Discovery Miles 42 230
Solutions for High-Touch Communications…
Michael A. Brown Sr.
Hardcover
R5,013
Discovery Miles 50 130
Wireless Public Safety Networks 3…
Daniel Camara, Navid Nikaein
Hardcover
|