![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Joerg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universitat Munchen in Munchen, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts
The mechanics underlying the form and structure of biological tissues is being increasingly investigated and appreciated, with new results appearing at a fast pace. Cellular Patterns covers the salient elements of this thriving field of research in a textbook style, including both historic landmark results and recent achievements. By building on concepts such as packing, confinement, surface tension, and elastic instabilities, the book explains the structure and the shape of sheet-like and bulk tissues by adapting the mechanics of continuous media to living matter. It reviews experimental results and empirical laws, and wherever possible, it discusses more than a single theoretical interpretation of a given phenomenon. The in-depth treatment of technical details, the many boxes summarizing essential physical and biological ideas, and an extensive set of problems make this book suitable as a complementary textbook for a graduate course in biophysics and as a standalone reference for students and researchers in biophysics, bioengineering, and mathematical biology interested in the mechanics of tissue. Features: Provides an overview of patterns and shapes seen in animal tissues in addition to an interpretation of these structures in terms of physical forces and processes Contains detailed analysis and a critical comparison of mechanical models of cells, tissues, and morphogenetic movements Presents a visually rich style which is accessible to physicists and biologists alike
. Despite their capacity to carry out functions that previously were unobtainable, smart polymers and hydrogels tend to have painfully slow response times. On the other hand biological systems go through phase changes at an extremely fast rate. Reflexive Polymers and Hydrogels examines the natural systems that respond almost instantaneously to environmental stimuli, and thus gives the reader an understanding of the mechanisms that govern these responses. The book includes chapters on approaches and procedures for designing a synthetic ...flash... system based on naturally occurring systems. It also deals with some of the promising potential applications of flash systems in industry.
This book gathers selected, extended and revised contributions to the 17th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and the 5th Conference on Imaging and Visualization (CMBBE 2021), held online on September 7-9, 2021, from Bonn, Germany. It reports on cutting-edge models, algorithms and imaging techniques for studying cells, tissues and organs in normal and pathological conditions. It covers numerical and machine learning methods, finite element modeling and virtual reality techniques, applied to understand biomechanics of movement, fluid and soft tissue biomechanics. It also reports on related advances in rehabilitation, surgery and diagnosis. All in all, this book offers a timely snapshot of the latest research and current challenges at the interface between biomedical engineering, computational biomechanics and biological imaging. Thus, it is expected to provide a source of inspiration for future research and cross-disciplinary collaborations.
Medical image analysis using advanced fuzzy set theoretic techniques is an exciting and dynamic branch of image processing. Since the introduction of fuzzy set theory, there has been an explosion of interest in advanced fuzzy set theories-such as intuitionistic fuzzy and Type II fuzzy set-that represent uncertainty in a better way. Medical Image Processing: Advanced Fuzzy Set Theoretic Techniques deals with the application of intuitionistic fuzzy and Type II fuzzy set theories for medical image analysis. Designed for graduate and doctorate students, this higher-level text: Provides a brief introduction to advanced fuzzy set theory, fuzzy/intuitionistic fuzzy aggregation operators, and distance/similarity measures Covers medical image enhancement using advanced fuzzy sets, including MATLAB (R)-based examples to increase contrast of the images Describes intuitionistic fuzzy and Type II fuzzy thresholding techniques that separate different regions/leukocyte types/abnormal lesions Demonstrates the clustering of unwanted lesions/regions even in the presence of noise by applying intuitionistic fuzzy clustering Highlights the edges of poorly illuminated images and uses intuitionistic fuzzy edge detection to find the edges of different regions Defines fuzzy mathematical morphology and explores its application using the Lukasiewicz operator, t-norms, and t-conorms Medical Image Processing: Advanced Fuzzy Set Theoretic Techniques is useful not only for students, but also for teachers, engineers, scientists, and those interested in the field of medical image analysis. A basic knowledge of fuzzy set is required, along with a solid understanding of mathematics and image processing.
The book focuses on biomedical innovations related to the diagnosis and treatment of sleep apnea. The latest diagnostic tools are described, including sleep laboratory equipment, wearables, and even smartphone apps. Innovative medical devices for treatment are also covered, such as CPAP, Auto-PAP, hypoglossal nerve stimulation, phrenic nerve stimulation, acoustic brain stimulation and electrical brain stimulation. This is an ideal book for biomedical engineers, pneumologists, neurologists, cardiologists, physiologists, ENT physicians, pediatrics, and epidemiologists who are interested in learning about the latest technologies in treating and diagnosing sleep apnea.
This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic.
Ever since the birth of molecular biology, the tantalizing possibility of treating disease at its genetic roots has become increasingly feasible. Gene therapy - though still in its infancy - remains one of the hottest areas of research in medicine. Its approach utilizes a gene transfer vehicle ('vector') to deliver therapeutic DNA or RNA to cells of the body in order to rectify the defect that is causing the disease. Successful therapies have been reported in humans in recent years such as cures in boys with severe immune deficiencies. Moreover, gene therapy strategies are being adapted in numerous biomedical laboratories to obtain novel treatments for a variety of diseases and to study basic biological aspects of disease. Correction of disease in animal studies, is steadily gaining ground, highlighting the immense potential of gene therapy in the medical profession.This book will cover topics that are at the forefront of biomedical research such as RNA interference, viral and non-viral gene transfer systems, treatment of hematological diseases and disorders of the central nervous system. Leading experts on the respective vector or disease will contribute the individual chapters and explain cutting-edge technologies. It also gives a broad overview of the most important gene transfer vectors and most extensively studied target diseases. This comprehensive guide is therefore a must-read for anyone in the biotechnology, biomedical or medical industries seeking to further their knowledge in the area of human gene therapy.
The need for qualified specialists to work with and apply sophisticated technology in contemporary medicine is rapidly growing. Professional bodies predict that meeting the needs of healthcare globally will require almost tripling the number of Medical Physicists by 2035. Similar challenges exist in the constantly growing profession of Medical Engineering. They can be solved most efficiently and effectively with the tools of e-Learning, and a free and open-source Virtual Learning Environment (VLE) platform such as Moodle is a welcome solution. The Moodle VLE platform is a free, open source learning management system that is the most popular choice for higher educational institutions worldwide. However, the best practices of the Moodle system are still unknown to many. This practical guide provides educators, programme administrators, and programme directors with a condensed guide to Moodle and step-by-step instructions on how to create a single course or an entire educational programme. It also discusses cost-effective ways to apply e-Learning in an educational institution. This guide is accessible to all professionals, even those without specialist IT skills, and will be helpful to educators of all levels in Medical Physics and Engineering, as well as in other medical and medical-related specialties or disciplines with a strong imaging component. Features: Provides step-by-step instructions of how to build a course/module for Higher Education on Moodle Gives practical solutions to implementing e-Learning in Medical Physics and Engineering Explores useful tips and tricks for best practice
This easy-to-understand pocketbook in the highly respected Clark’s stable of imaging texts is an invaluable tool and training aid, providing essential information for mammographic positioning, technique and interpretation for mammography practitioners at all levels. Adopting a systematic and structured approach facilitating rapid reference in the clinical setting, the book covers general principles and all routine mammographic projections, including additional and adapted projections covered in a separate section, and is highly illustrated with clear explanatory line diagrams and imaging photographs. Clark’s Essential Guide to Mammography is ideal as an educational tool for trainee mammographers, trainee assistant and associate apprenticeship mammographers, mammography training teams and universities delivering mammography education and a convenient clinical guide for practising mammographers, including assistant and associate apprenticeship mammographers.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.
The Cell-Surface Interaction, by J. S. Hayes, E. M. Czekanska and R. G. Richards. Studying Cell-Surface Interactions In Vitro: A Survey of Experimental Approaches and Techniques, by Stefanie Michaelis, Rudolf Robelek and Joachim Wegener. Harnessing Cell-Biomaterial Interactions for Osteochondral Tissue Regeneration, by Kyobum Kim, Diana M. Yoon, Antonios G. Mikos and F. Kurtis Kasper. Interaction of Cells with Decellularized Biological Materials, by Mathias Wilhelmi, Bettina Giere and Michael Harder. Evaluation of Biocompatibility Using In Vitro Methods: Interpretation and Limitations, by Arie Bruinink and Reto Luginbuehl. Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues, by Margit Schulze and Edda Tobiasch. Bioactive Glass-Based Scaffolds for Bone Tissue Engineering, by Julia Will, Lutz-Christian Gerhardt and Aldo R. Boccaccini. Microenvironment Design for Stem Cell Fate Determination, by Tali Re'em and Smadar Cohen. Stem Cell Differentiation Depending on Different Surfaces, by Sonja Kress, Anne Neumann, Birgit Weyand and Cornelia Kasper. Designing the Biocompatibility of Biohybrids, by Frank Witte, Ivonne Bartsch and Elmar Willbold. Interaction of Cartilage and Ceramic Matrix, by K. Wiegandt, C. Goepfert, R. Portner and R. Janssen. Bioresorption and Degradation of Biomaterials, by Debarun Das, Ziyang Zhang, Thomas Winkler, Meenakshi Mour, Christina I. Gunter, Michael M. Morlock, Hans-Gunther Machens and Arndt F. Schilling."
This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor's laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.
The book offers readers an understanding of the development of neural crest cells, which is crucial as many birth defects and tumours are of neural crest origin. The neural crest is a transient tissue of the vertebrate embryo. It originates from the future spinal cord and neural crest stem cells emigrate from this location to various places in the embryo, giving rise to many different cell types and tissues. Neural crest derivatives include the peripheral nervous systems, endocrine cells such as the adrenal medulla, smooth musculature of the cardiac outflow tract and great blood vessels, as well as craniofacial bone and cartilage. The underlying mechanisms that regulate embryonic neural crest development are still being investigated and are important for our understanding of neural crest pathologies. Readers will have ready access to current research topics, elaborated in great detail, with a focus on adult neural crest-derived stem cells, which persist in various locations of the postnatal organism. Delving into stem cells from different locations of the body, the book explores the best possible source of such cells for future use in medical applications.
Discover the Most Advanced Technologies in Biomagnetics Co-edited by Professor Ueno, a leader in the biomagnetics field for over 40 years, Biomagnetics: Principles and Applications of Biomagnetic Stimulation and Imaging explains the physical principles of biomagnetic stimulation and imaging and explores applications of the latest techniques in neuroscience, clinical medicine, and healthcare. The book shows you how the techniques are used in hospitals and why they are so promising. A brief overview of recent research trends in biomagnetics provides you with an up-to-date, informative guide to explore further in this field. The book focuses on three important areas: Magnetic nerve stimulation and transcranial magnetic stimulation Biomagnetic measurements and imaging of the human brain by advanced technologies of magnetoencephalography and MRI Biomagnetic approaches to potential treatments of cancers, pains, and other neurological and psychiatric diseases, such as Alzheimer's disease and depression These core areas of the book were developed from the editors' prestigious graduate-level courses in biomedical engineering. The text also discusses biomagnetic approaches to advanced medicine, including regenerative and rehabilitation medicine.
As one of the most important tasks in biomedical imaging, image segmentation provides the foundation for quantitative reasoning and diagnostic techniques. A large variety of different imaging techniques, each with its own physical principle and characteristics (e.g., noise modeling), often requires modality-specific algorithmic treatment. In recent years, substantial progress has been made to biomedical image segmentation. Biomedical image segmentation is characterized by several specific factors. This book presents an overview of the advanced segmentation algorithms and their applications.
Of the research areas devoted to biomedical sciences, the study of the brain remains a field that continually attracts interest due to the vast range of people afflicted with debilitating brain disorders and those interested in ameliorating its effects. To discover the roots of maladies and grasp the dynamics of brain functions, researchers and practitioners often turn to a process known as brain source localization, which assists in determining the source of electromagnetic signals from the brain. Aiming to promote both treatments and understanding of brain ailments, ranging from epilepsy and depression to schizophrenia and Parkinson's disease, the authors of this book provide a comprehensive account of current developments in the use of neuroimaging techniques for brain analysis. Their book addresses a wide array of topics, including EEG forward and inverse problems, the application of classical MNE, LORETA, Bayesian based MSP, and its modified version, M-MSP. Within the ten chapters that comprise this book, clinicians, researchers, and field experts concerned with the state of brain source localization will find a store of information that can assist them in the quest to enhance the quality of life for people living with brain disorders.
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
This book is a tribute to Professor Yuan-Cheng Fung, the Father of Biomechanics and a pioneer in Bioengineering, in honor of his 90th Birthday. The book consists of articles contributed by his colleagues, students, friends and family. These articles illustrate Professor Fung's profound influence on outstanding leaders in bioengineering, especially biomechanics, and on the life and work of all people who have been in contact with him. The scientific topics covered range from fundamentals of science and engineering (e.g., residual stress, flow dynamics, and cellular signaling) to clinical disorders (e.g., atherosclerosis, diabetes, and hypertension). The articles cover the whole spectrum of biological hierarchy, from genes/molecules to cells/tissues, and organs/systems, with close correlations between engineering and biomedical sciences. This book provides an excellent view of the marvelous contributions of Professor Fung as a Renaissance Man.
Biomass and Carbon Fuels in Metallurgy presents contemporary and new insights into the use of carbonaceous (Biomass) fuels in the metallurgical sector. The authors describe application of these fuels in different technological processes to produce pig iron, steel and ferroalloys. Emphasis is placed on biomass and its metallurgical utilization. Coverage includes the specification of fuels, their classification and the characteristics of their basic properties. The use of carbonaceous fuels in the production of various kinds of agglomerates (ferriferous, manganese and metalized) is also covered. Key Features: Provides a comprehensive view of carbonaceous fuels in various metallurgy processes Details experiments conducted on the use of traditional and alternative (biomass) carbonaceous fuels for the production of agglomerates. Demonstrates that the energy potential of biomass can also be successfully used in pyrometallurgical processes Describes applications of biomass-based fuels in different technological processes for the production of pig iron, steel and ferroalloys. Coverage includes the specification of fuels, their classification and the characteristics of their basic properties.
Two of the most important yet often overlooked aspects of a medical device are its usability and accessibility. This is important not only for health care providers, but also for older patients and users with disabilities or activity limitations. Medical Instrumentation: Accessibility and Usability Considerations focuses on how lack of usability and accessibility pose problems for designers and users of medical devices, and how to overcome these limitations. Divided into five broad sections, the book first addresses the nature and extent of the problem by identifying access barriers, human factors, and policy issues focused on the existing infrastructure. The subsequent sections examine responses to the problem, beginning with tools for usability and accessibility analysis and principles of design for medical instrumentation. Building on this foundation, the third section focuses on recommendations for design guidelines while the fourth section explores emerging trends and future technologies for improving medical device usability. The final section outlines key challenges, knowledge gaps, and recommendations from accomplished experts in the field presented at the recent Workshop on Accessible Interfaces for Medical Instrumentation. Integrating expert perspectives from a wide array of disciplines, Medical Instrumentation traces a clear roadmap for improving accessibility and usability for a variety of stakeholders and provides the tools necessary to follow it.
Biomimetics is the idea of creating new technologies abstracted from what we find in biology. Ocean Innovation: Biomimetics Beneath the Waves seeks that technological inspiration from the rich biodiversity of marine organisms. Bringing both a biological and engineering perspective to the biomimetic potential of oceanic organisms, this richly illustrated book investigates questions such as: How can we mimic the sensory systems of sea creatures like sharks, sea turtles, and lobsters to improve our ability to navigate underwater? What can we do to afford humans the opportunity to go unnoticed by marine life? How can we diffuse oxygen from water to enable deep diving without the risk of decompression sickness? Each chapter explores an area where we, as divers and technologists, can benefit from understanding how animals survive in the sea, presenting case studies that demonstrate how natural solutions can be applied to mankind's engineering challenges.
This book discusses fabrication of functionalized gold nanoparticles (GNPs) and multifunctional nanocomposites, their optical properties, and applications in biological studies. This is the very first book of its kind to comprehensively discuss published data on in vitro and in vivo biodistribution, toxicity, and uptake of GNP by mammalian cells providing a systematization of data over the GNP types and parameters, their surface functionalization, animal and cell models. As distinct from other related books, Gold Nanoparticles in Biomedical Applications discusses the immunological properties of GNPs and summarizes their applications as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. Although the potential of GNPs in nanobiotechnology has been recognized for the past decade, new insights into the unique properties of multifunctional nanostructures have recently emerged. With these developments in mind, this book unites ground breaking experimental data with a discussion of hybrid nanoparticle systems that combine different nanomaterials to create multifunctional structures. These novel hybrids constitute the material basis of theranostics, bringing together the advanced properties of functionalized GNPs and composites into a single multifunctional nanostructure with simultaneous diagnostic and therapeutic functions. Such nanohybrids can be physically and chemically tailored for a particular organ, disease, and patient thus making personalized medicine available.
Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
This comprehensive reference work details the latest developments in fluorescence imaging and related biological quantification. It explores the most recent techniques in this imaging technology through the utilization and incorporation of quantification analysis which makes this book unique. It also covers super resolution microscopy with the introduction of 3D imaging and high resolution fluorescence. Many of the chapter authors are world class experts in this medical imaging technology. |
![]() ![]() You may like...
Anatomy, Physiology, & Disease - An…
Bruce Colbert, Jeff Ankney, …
Paperback
R2,848
Discovery Miles 28 480
|