![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
Nanotechnology has the potential to change every part of our lives. Today, nanotechnology-based products are used in many areas, and one of the most important areas is drug delivery. Nanoparticulate drug delivery systems not only provide controlled delivery of drugs and improved drug solubility but also improve drug efficiency and reduce side effects via targeting mechanisms. However, compared with conventional drug delivery systems, few nanoparticle-based products are on the market and almost all are nontargeted or only passively targeted systems. In addition, obtaining targeted nanoparticle systems is quite complex and requires several evaluation mechanisms. This book discusses the production, characterization, regulation, and currently marketed targeted nanoparticle systems in a broad framework. It provides an overview of targeted nanoparticles' (i) in vitro characterization, such as particle size, stability, ligand density, and type; (ii) in vivo behavior for different targeting areas, such as tumor, brain, and vagina; and (iii) current advances in this field, including clinical trials and regulation processes.
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
The book presents an innovative technology based on injection of a very weak current to trace the quantity of a drug carried immediately after the administration. The book makes the reader familiar with the technology, from the conception through the design of the instrument, up to the preliminary clinical applications. In the first chapter, the method of transdermal drug delivery and the use of impedance spectroscopy in the dermatological field are presented. The second chapter describes a screening measurement campaign aimed at proving the feasibility of the assessment method and identifying the bandwidth of interest. The prototyping, validation and characterization of an instrument to measure the amount of drug delivered (DUSM: Drug Under Skin Meter) are presented in chapter three. In the fourth chapter three experimental campaigns, based on the electrical analysis of the biological tissue behavior due to the drug delivery, are reported: (i) laboratory emulation on eggplants, (ii) ex-vivo tests on pig ears, and finally (iii) in-vivo tests on human volunteers. In the fifth chapter a behavioral model, based on Finite Elements and Partial Differential Equation, of an impedance-based measurement system for assessing the drug released under the skin, during transdermal delivering, is proposed. The last chapter is dedicated to present a campaign in order to prove the suitability for insulin therapy applications. This book is intended for biomedical engineers, biomedical engineering students, operators working in the field of biomedical instrumentation, biotechnologists, and technicians of transdermal vehiculation.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.The chapter "Aggregation-Induced Emission In Electrochemiluminescence: Advances and Perspectives" is available open access under a CC BY 4.0 License via link.springer.com.
This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN). The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability. The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority. Readers will also benefit from this book s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals. "
This book characterizes how to design and synthesize nanomaterials of an organic and mineral nature. The book also discusses the visualization of developed nanomaterials and their bio-applications, as well as describes the biomedical effects and environmental impact of nanomaterials. This is an ideal book for students studying biomedicine or the life sciences, as well as researchers and professionals in medicine, environmental protection, biotechnology, agriculture, and the food industry. More specifically, this book addresses the important nanomaterials and nanobiotechnologies that are used in those fields in biomedicine and life sciences.
This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineers and physicists may benefit from the overview of current research endeavors and future directions. Furthermore, it may also serve to direct manufacturers towards the design of more efficient and safer clinical, industrial and laboratory equipment.
Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field's scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads between basic and applied science. In closing, the requirements for a suitable regulatory framework are discussed. The book is intended as a source of information and orientation for researchers, students and practitioners in the natural sciences and technology assessment; for members of scientific and technological, governmental and funding institutions; and for members of the general public interested in essential information on the current status, prospects and implications of synthetic biology.
This book gathers state-of-the-art research in computational engineering and bioengineering to facilitate knowledge exchange between various scientific communities. Computational engineering (CE) is a relatively new discipline that addresses the development and application of computational models and simulations often coupled with high-performance computing to solve complex physical problems arising in engineering analysis and design in the context of natural phenomena. Bioengineering (BE) is an important aspect of computational biology, which aims to develop and use efficient algorithms, data structures, and visualization and communication tools to model biological systems. Today, engineering approaches are essential for biologists, enabling them to analyse complex physiological processes, as well as for the pharmaceutical industry to support drug discovery and development programmes.
This book presents futuristic trends in computational intelligence including algorithms as applicable to different application domains in health informatics covering bio-medical, bioinformatics, and biological sciences. Latest evolutionary approaches to solve optimization problems under biomedical engineering field are discussed. It provides conceptual framework with a focus on application of computational intelligence techniques in the domain of biomedical engineering and health informatics including real-time issues.
This book highlights the multifaceted roles of Reactive Oxygen Species (ROS) in modulating normal cellular and molecular mechanisms during the development of different types of heart disease. Each chapter in the book deals with the role that altered redox homeostasis plays in the pathophysiology of heart disease. In addition, the book explains how reactive oxidant species interact with their targets and provides novel strategies for attenuating oxidative stress-induced types of heart disease. The book not only covers ROS-induced response in heart disease at the cellular level, but also demonstrates that an imbalance of redox states has its roots in our genes, and explains the ways gene expression is regulated. In turn, it reviews potential sources of ROS, their pathological effects on the heart, and potential sites for therapeutic interventions.
This book provides a concise overview of VR systems and their cybersickness effects, giving a description of possible reasons and existing solutions to reduce or avoid them. Moreover, the book explores the impact that understanding how efficiently our brains are producing a coherent and rich representation of the perceived outside world would have on helping VR technics to be more efficient and friendly to use. Getting Rid of Cybersickness will help readers to understand the underlying technics and social stakes involved, from engineering design to autonomous vehicle motion sickness to video games, with the hope of providing an insight of VR sickness induced by the emerging immersive technologies. This book will therefore be of interest to academics, researchers and designers within the field of VR, as well as industrial users of VR and driving simulators.
This book aims at exposing its readers to some of the most significant advances in assistive technologies. Assistive technologies develop devices to assist vulnerable people, including elderly people, people with cognitive disabilities such as memory problems or dementia, and people with functional disabilities such as those needing support in toileting, moving around, eating, bathing, dressing, grooming, and taking personal care. The ever-increasing life expectancy and world population, along with the emergence of new diseases and the regrettable continuation of armed conflicts, press for development and availability of assistive technologies that offer people in need the opportunity to live secure and controlled lives with more active participation in society and at a reduced assistive cost. This task can be accomplished only with more advanced devices than traditional-powered wheelchairs or eating/drinking devices, including prosthetics, exoskeletons, visual and hearing aids, cognitive aids, and devices enhanced with artificial intelligence. The book consists of an editorial note and an additional twelve (12) chapters, all of which have been written by authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into four parts, namely (i) Advances in Assistive Technologies in Healthcare, (ii) Advances in Assistive Technologies in Medical Diagnosis, (iii) Advances in Assistive Technologies in Mobility and Navigation, and (iv) Advances in Privacy and Explainability in Assistive Technologies. This research book is directed towards professors, researchers, scientists, engineers, and students in assistive technologies. It is also directed towards readers who come from other disciplines and is interested in becoming versed in some of the most recent assistive technologies. An extensive list of bibliographic references at the end of each chapter guides its readers to probe further into the application areas of interest to them.
The Role of Surface Modification on Bacterial Adhesion of Bio-implant Materials: Machining, Characterization, and Applications, explores the relationship between the surface roughness of artificial implants used for hard tissue replacement and their bacterial adhesion. It summarizes the reason for the failure of implants, the mechanisms of bacterial formation on implant surfaces, and the fundamental and established methods of implant surface modification techniques. It provides readers with an organized and rational representation about implant manufacturing and mechanical surface modification. It also explores the use of developed unidirectional abrasive flow finishing processes to finish biomaterials at the nano-level. It is an invaluable guide for academics, graduate students, biomaterial scientists, and manufacturing engineers researching implants, related infections, and implant manufacturing. Key Features: Explores implant related infections Discusses surface modification techniques Contains information on the mechanical finishing processes and complete guide on developed cutting edge unidirectional abrasive flow finishing technology
Circulating cell-free DNA is poised to transform cancer diagnosis and care; however, it carries technical challenges such as low abundance, fragmentation and sensitivity to biospecimen handling. Development of clinically useful assays hinges on understanding the unique technical aspects of working with cell-free DNA as a substrate. This book provides an in-depth summary of the technical issues impacting cell-free DNA purification from blood plasma and analysis in a cancer context, including design of PCR assays, sequencing library preparation and methylation analysis. Emerging fields such as extracellular vesicles and blood nucleases are also covered, as well as basic biology and considerations pertinent to biobanking.
This is the first book offering a systematic description of tongue image analysis and processing technologies and their typical applications in computerized tongue diagnostic (CTD) systems. It features the most current research findings in all aspects of tongue image acquisition, preprocessing, classification, and diagnostic support methodologies, from theoretical and algorithmic problems to prototype design and development of CTD systems. The book begins with a very in-depth description of CTD on a need-to-know basis which includes an overview of CTD systems and traditional Chinese medicine (TCM) in order to provide the information on the context and background of tongue image analysis. The core part then introduces algorithms as well as their implementation methods, at a know-how level, including image segmentation methods, chromatic correction, and classification of tongue images. Some clinical applications based on these methods are presented for the show-how purpose in the CTD research field. Case studies highlight different techniques that have been adopted to assist the visual inspection of appendicitis, diabetes, and other common diseases. Experimental results under different challenging clinical circumstances have demonstrated the superior performance of these techniques. In this book, the principles of tongue image analysis are illustrated with plentiful graphs, tables, and practical experiments to provide insights into some of the problems. In this way, readers can easily find a quick and systematic way through the complicated theories and they can later even extend their studies to special topics of interest. This book will be of benefit to researchers, professionals, and graduate students working in the field of computer vision, pattern recognition, clinical practice, and TCM, as well as those involved in interdisciplinary research.
This book covers the most recent advances in using nanoparticles for biomedical imaging, including magnetic resonance imaging (MRI), magnetic particle imaging (MPI), nuclear medicine, ultrasound (US) imaging, computed tomography (CT), and optical imaging. Topics include nanoparticles for MRI and MPI, siRNA delivery, theranostic nanoparticles for PET imaging of drug delivery, US nanoparticles for imaging drug delivery, inorganic nanoparticles for targeted CT imaging, and quantum dots for optical imaging. This book serves as a valuable resource for the fundamental science of diagnostic nanoparticles and their interactions with biological targets, providing a practical handbook for improved detection of disease and its clinical implementation.
This book presents the proceedings of the 3rd International Conference on Radiation Safety & Security in Healthcare Services. The conference was held at Universiti Sains Malaysia in Penang on 19th-20th August 2017.
This classroom-tested textbook will assist dental students with their academic research activities and help them to be competitive in today's fast-growing research environment. It is designed as a core text for dental school classes such as Research Methodology and Scientific and Technical Writing, as well as Responsible Conduct of Research (RCR) training, but will also be a valuable resource for students and researchers in related fields, such as the medical sciences and biomedical engineering. The authors start the book by explaining key concepts and common approaches in dental research, both in basic science and clinical dentistry. They then familiarize readers with evidence-based research in dentistry and how to write a systematic review, explain the process of designing and presenting a proposal, discuss reporting results both in scientific and clinical research, and cover ethics in research, highlighting the significance of adherence to ethics both in animal as well as human studies.
This Microbiology Monographs volume covers the current and most recent advances in genomics and genetics, biochemistry, physiology, and molecular biology of C. reinhardtii. Expert international scientists contribute with reviews on the genome, post-genomic techniques, the genetic toolbox development as well as new insights in regulation of photosynthesis and acclimation strategies towards environmental stresses and other structural and genetic aspects, including applicable aspects in biotechnology and biomedicine. Advancement in Chlamydomonas biology allowed new understandings in biotechnological and biomedical related aspects.
This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.
This book looks at the growing segment of Internet of Things technology (IoT) known as Internet of Medical Things (IoMT), an automated system that aids in bridging the gap between isolated and rural communities and the critical healthcare services that are available in more populated and urban areas. Many technological aspects of IoMT are still being researched and developed, with the objective of minimizing the cost and improving the performance of the overall healthcare system. This book focuses on innovative IoMT methods and solutions being developed for use in the application of healthcare services, including post-surgery care, virtual home assistance, smart real-time patient monitoring, implantable sensors and cameras, and diagnosis and treatment planning. It also examines critical issues around the technology, such as security vulnerabilities, IoMT machine learning approaches, and medical data compression for lossless data transmission and archiving. Internet of Medical Things is a valuable reference for researchers, students, and postgraduates working in biomedical, electronics, and communications engineering, as well as practicing healthcare professionals.
This book presents the latest cutting edge research, theoretical methods, and novel applications in the field of computational intelligence and computational biological approaches that are aiming to combat COVID-19. The book gives the technological key drivers behind using AI to find drugs that target the virus, shedding light on the structure of COVID-19, detecting the outbreak and spread of new diseases, spotting signs of a COVID-19 infection in medical images, monitoring how the virus and lockdown is affecting mental health, and forecasting how COVID-19 cases and deaths will spread across cities and why. Further, the book helps readers understand computational intelligence techniques combating COVID-19 in a simple and systematic way.
Biomechanics of Human Motion: Applications in the Martial Arts, Second Edition, explores the biomechanical principles of nine different forms of martial arts, with specific attention paid to their anatomical features. Within this examination, Professor Arus highlights the use of energy and force especially in Kyusho-Jutsu. Whereas the first edition provided an in-depth explanation of the Aikido techniques of Kokyu-ryoku, the second edition focusses specifically on the grabbing and liberation techniques used in Kyusho-Jutsu. Such an examination stresses the importance of vital points, "finger manipulation", and their co rresponding emphasis on energy usage. As Professor Arus details throughout Biomechanics of Human Motion, Second Edition, knowledge of this form of pressure point maneuvering is useful in both attack and counterattack situations, especially since the martial artist's anatomo-physiological adaptation to effort represents the most significant development in fighting regimens. The second edition also includes a discussion of the katana. Professor Arus notes that defense against the katana is nearly impossible, describing the three major steps used in Japanese (Ma). It is customary in Aikido to defend against a wooden sword. By using a wooden sword, an Aikido Master's demonstration is pre-determined. Techniques to defend against these demonstrations are discussed throughout the book. Finally, various attack and defense techniques using pressure points are also explained in Biomechanics of Human Motion, Second Edition. |
You may like...
Database Systems: The Complete Book…
Hector Garcia-Molina, Jeffrey Ullman, …
Paperback
Die Klein Boekie van Safari-dieregeluide
Caz Buckingham, Andrea Pinnington
Board book
Database and Expert Systems Applications…
Trevor Bench-Capon, Giovanni Soda, …
Paperback
R2,874
Discovery Miles 28 740
|