![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
Choice Recommended Title, April 2020 This comprehensive book, edited by two leading experts in nanotechnology and bioengineering with contributions from a global team of specialists, provides a detailed overview of the environmental and health impacts associated with the toxicology of nanomaterials. Special attention is given to nanomaterial toxicity during synthesis, production and application, and chapters throughout are focused on key areas that are important for future research and development of nanomaterials. This book will be of interest to advanced students studying biomedical engineering and materials science, PhD researchers, post-docs and academics working in the area of nanotechnology, medicine, manufacturing and regulatory bodies. Features: Collates and critically evaluates various aspects of the toxicology of nanomaterials in one comprehensive text Discusses the various effects of nanocrystals including the morphologies on cytotoxicity, in addition to the environmental and cytotoxicity risks of graphene and 2D nanomaterials Explores practical methods of detection and quantification, with applications in the environmental and healthcare fields
This transformative textbook, first of its kind to incorporate engineering principles into medical education and practice, will be a useful tool for physicians, medical students, biomedical engineers, biomedical engineering students, and healthcare executives. The central approach of the proposed textbook is to provide principles of engineering as applied to medicine and guide the medical students and physicians in achieving the goal of solving medical problems by engineering principles and methodologies. For the medical students and physicians, this proposed textbook will train them to "think like an engineer and act as a physician". The textbook contains a variety of teaching techniques including class lectures, small group discussions, group projects, and individual projects, with the goals of not just helping students and professionals to understand the principles and methods of engineering, but also guiding students and professionals to develop real-life solutions. For the biomedical engineers and biomedical engineering students, this proposed textbook will give them a large framework and global perspective of how engineering principles could positively impact real-life medicine. To the healthcare executives, the goal of this book is to provide them general guidance and specific examples of applying engineering principles in implementing solution-oriented methodology to their healthcare enterprises. Overall goals of this book are to help improve the overall quality and efficiency of healthcare delivery and outcomes.
This book explores the physics of CT dosimetry and provides practical guidance on best practice for medical researchers and practitioners. A rigorous description of the basic physics of CT dosimetry is presented and illustrates flaws of the current methodology. It also contains helpful (and rigorous) shortcuts to reduce the measurement workload for medical physicists. The mathematical rigor is accompanied by easily-understood physical explanations and numerous illustrative figures. Features: Authored by a recognised expert in the field and award-winning teacher Includes derivations for tube current modulation and variable pitch as well as stationary table techniques Explores abnormalities present in dose-tracking software based on CTDI and presents methods to correct them
Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security. Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on: Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube accelerators, neutron generators with detection of associated alpha particles, plasma devices, high flux sources, and laser-generated neutron sources Nuclear reactions with 14 MeV neutrons, including measurements of energy spectra, angular distributions, and deductions of reaction mechanism Nuclear reactions with three particles in the final state induced by neutrons and the identification of effects of final state interaction, quasi-free scattering, and charge-dependence of nuclear forces Charged particle and neutron detection methods, particularly position-sensitive detectors Industrial applications of nuclear analytical methods, especially in the metallurgy and coal industries Quality assurance and quality control measures for nuclear analytical methods Nuclear and atomic physics-based technology for combating illicit trafficking and terrorism Medical applications, including radiography, radiotherapy, in vivo neutron activation analysis, boron neutron therapy, collimated neutron beams, and dosimetry This book reflects the exciting developments in both fundamental nuclear physics and the application of fast neutrons to many practical problems. The book shows how 14 MeV neutrons are used in materials detection and analysis to effectively inspect large volumes in complex environments.
Statistical Computing in Nuclear Imaging introduces aspects of Bayesian computing in nuclear imaging. The book provides an introduction to Bayesian statistics and concepts and is highly focused on the computational aspects of Bayesian data analysis of photon-limited data acquired in tomographic measurements. Basic statistical concepts, elements of decision theory, and counting statistics, including models of photon-limited data and Poisson approximations, are discussed in the first chapters. Monte Carlo methods and Markov chains in posterior analysis are discussed next along with an introduction to nuclear imaging and applications such as PET and SPECT. The final chapter includes illustrative examples of statistical computing, based on Poisson-multinomial statistics. Examples include calculation of Bayes factors and risks as well as Bayesian decision making and hypothesis testing. Appendices cover probability distributions, elements of set theory, multinomial distribution of single-voxel imaging, and derivations of sampling distribution ratios. C++ code used in the final chapter is also provided. The text can be used as a textbook that provides an introduction to Bayesian statistics and advanced computing in medical imaging for physicists, mathematicians, engineers, and computer scientists. It is also a valuable resource for a wide spectrum of practitioners of nuclear imaging data analysis, including seasoned scientists and researchers who have not been exposed to Bayesian paradigms.
This book will serve as the preeminent text book on the topic of 'base excision repair', a key DNA repair pathway that protects cells from most spontaneous forms of DNA damage, including oxidative lesions that arise both in the nuclear and mitochondrial genomes. The book, which includes contributions from many of the world leaders in the field, provides a detailed description of the molecular mechanisms of base excision repair, as well as its emerging relationship to epigenetic regulation, the aging process and human disease, such as cancer susceptibility, immunological defects and neurological disorders. The book will also cover the state-of-the-art technologies being developed to assess base excision repair capacity among individuals in the population, in addition to the strategies being employed to target base excision repair as part of therapeutic paradigms to eradicate disease, namely cancer.This book represents one of the most extensive efforts to date to cover the topic of 'base excision repair'. It includes chapters by many of the most established investigators in the field, from all over the world.
Praise for the prior edition "The author has done a magnificent job... this book is highly recommended for introducing biophysics to the motivated and curious undergraduate student." Contemporary Physics "a terrific text ... will enable students to understand the significance of biological parameters through quantitative examples a modern way of learning biophysics." American Journal of Physics "A superb pedagogical textbook... Full-color illustrations aid students in their understanding" Midwest Book Review This new edition provides a complete update to the most accessible yet thorough introduction to the physical and quantitative aspects of biological systems and processes involving macromolecules, subcellular structures, and whole cells. It includes two brand new chapters covering experimental techniques, especially atomic force microscopy, complementing the updated coverage of mathematical and computational tools. The authors have also incorporated additions to the multimedia component of video clips and animations, as well as interactive diagrams and graphs. Key Features: Illustrates biological examples with estimates and calculations of biophysical parameters. Features two brand-new chapters on experimental methods, a general overview and focused introduction to atomic force microscopy. Includes new coverage of important topics such as measures of DNA twist, images of nanoparticle assembly, and novel optical and electron nanoscopy. Provides a guide to investigating current expert biophysical research. Enhanced self-study problems and an updated glossary of terms.
Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.
"This book presents the technology evaluation methodology from the point of view of radiological physics and contrasts the purely physical evaluation of image quality with the determination of diagnostic outcome through the study of observer performance. The reader is taken through the arguments with concrete examples illustrated by code in R, an open source statistical language." - from the Foreword by Prof. Harold L. Kundel, Department of Radiology, Perelman School of Medicine, University of Pennsylvania "This book will benefit individuals interested in observer performance evaluations in diagnostic medical imaging and provide additional insights to those that have worked in the field for many years." - Prof. Gary T. Barnes, Department of Radiology, University of Alabama at Birmingham This book provides a complete introductory overview of this growing field and its applications in medical imaging, utilizing worked examples and exercises to demystify statistics for readers of any background. It includes a tutorial on the use of the open source, widely used R software, as well as basic statistical background, before addressing localization tasks common in medical imaging. The coverage includes a discussion of study design basics and the use of the techniques in imaging system optimization, memory effects in clinical interpretations, predictions of clinical task performance, alternatives to ROC analysis, and non-medical applications. Dev P. Chakraborty, PhD, is a clinical diagnostic imaging physicist, certified by the American Board of Radiology in Diagnostic Radiological Physics and Medical Nuclear Physics. He has held faculty positions at the University of Alabama at Birmingham, University of Pennsylvania, and most recently at the University of Pittsburgh.
Long-term success in scientific research requires skills that go well beyond technical prowess. Success and Creativity in Scientific Research: Amaze Your Friends and Surprise Yourself is based on a popular series of lectures the author has given to PhD students, postdoctoral researchers, and faculty at the Georgia Institute of Technology. Both entertaining and thought-provoking, this essential work supports advanced students and early career professionals across a variety of technical disciplines to thrive as successful and innovative researchers. Features: Discusses habits needed to find deep satisfaction in research, systematic and proven methods for generating good ideas, strategies for effective technical writing, and making compelling presentations Uses a conversational tone, making extensive use of anecdotes from scientific luminaries to engage readers Provides actionable methods to help readers achieve long-term career success Offers memorable examples to illustrate general principles Features topics relevant to researchers in all disciplines of science and engineering This book is aimed at students and early career professionals who want to achieve the satisfaction of performing creative and impactful research in any area of science or engineering.
This book encompasses the full breadth of the super-resolution imaging field, representing modern techniques that exceed the traditional diffraction limit, thereby opening up new applications in biomedicine. It shows readers how to use the new tools to increase resolution in sub-nanometer-scale images of living cells and tissue, which leads to new information about molecules, pathways and dynamics. The book highlights the advantages and disadvantages of the techniques, and gives state-of-the-art examples of applications using microscopes currently available on the market. It covers key techniques such as stimulated emission depletion (STED), structured illumination microscopy (SSIM), photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). It will be a useful reference for biomedical researchers who want to work with super-resolution imaging, learn the proper technique for their application, and simultaneously obtain a solid footing in other techniques.
The bioscience of immunology has given us a better understanding of human health and disease. Artificial intelligence (AI) has elevated that understanding and its applications in immunology to new levels. Together, AI for immunology is an advancing horizon in health care, disease diagnosis, and prevention. From the simple cold to the most advanced autoimmune disorders and now pandemics, AI for immunology is unlocking the causes and cures. Key features: A highly accessible and wide-ranging short introduction to AI for immunology Includes a chapter on COVID-19 and pandemics Includes scientific and clinical considerations, as well as immune and autoimmune diseases
This book provides an introduction to next-generation applications and technologies for improving diagnostic accuracy and prediction of treatment outcomes in dentistry through the use of artificial intelligence (AI) and machine learning (ML). The authors attempt to bridge the gap between dental research and global health outcomes, as well as provide a comprehensive guide to general and clinical aspects of dental and oral health issues and the etiology, prevalence, assessment, and management of these conditions. This book combines engineering applications and medical healthcare and will be an important reference for researchers, biomedical engineers, dental students, and dental practitioners.
Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication, immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues. This process pursues disorder identification and management. Medical imaging in 2D and 3D includes many techniques and operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space, clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology. This book highlights the framework of the robust and novel methods for medical image processing techniques in 2D and 3D. The chapters explore existing and emerging image challenges and opportunities in the medical field using various medical image processing techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing. The authors also discuss implementation strategies and future research directions for the design and application requirements of these systems. This book will benefit researchers in the medical image processing field as well as those looking to promote the mutual understanding of researchers within different disciplines that incorporate AI and machine learning. FEATURES Highlights the framework of robust and novel methods for medical image processing techniques Discusses implementation strategies and future research directions for the design and application requirements of medical imaging Examines real-time application needs Explores existing and emerging image challenges and opportunities in the medical field
The aim of this book is to outline the concept of entropy, various types of entropies and their implementation to evaluate a variety of biomedical signals/images. The book emphasizes various entropy-based image pre-processing methods which are essential for the development of suitable computerized examination systems. The recent research works on biomedical signal evaluation confirms that signal analysis provides vital information regarding the physiological condition of the patient, and the efficient evaluation of these signals can help to diagnose the nature and the severity of the disease. This book emphasizes various entropy-based image pre-processing methods which are essential for the development of suitable computerized examination systems for the analysis of biomedical images recorded with a variety of modalities. The work discusses the image pro-processing methods with the Entropies, such as Kapur, Tsallis, Shannon and Fuzzy on a class of RGB-scaled and gray-scaled medical pictures. The performance of the proposed technique is justified with the help of suitable case studies, which involves x-ray image analysis, MRI analysis and CT analysis. This book is intended for medical signal/image analysts, undergraduate and postgraduate students, researchers, and medical scientists interested in biomedical data evaluation.
The book spans across the research domains of mechanisation and automation, agrobusiness, food processing and value addition, climate smart agriculture, rural sanitation, agro biotechnology, and rural energy.
First published in 2001: This handbook has been written to give those professionals working in the development and use of medical devices practical knowledge about biomedical technology, regulations, and their relationship to quality health care.
This book covers the many ways humans benefit from interactions with other living species. By studying animals of all kinds and sizes, from microbial organisms to elephants and whales, we can learn about their adaptations to extreme conditions on the planet Earth, about the evolutionary development of specialized capabilities, and about their ways to defend themselves against predators and diseases. The authors discuss the strengths and weaknesses of Homo sapiens, and how the study of animals can make us stronger and healthier. To deepen our knowledge of genetics, molecular and cell biology, physiology and medicine, we need to study model organisms. To cure human disease, we can learn from animals how they have evolved ways to protect themselves. To improve human performance, we can study the animal kingdom's top performers and learn from their successes. Considering these important pointers, the authors review genetic engineering techniques that can translate our existing and future animal connections into benefits for human health and performance. Finally, they discuss the challenges associated with our animal connection: the history of pandemics caused by bacterial and viral pathogens demonstrates that there is a risk for transmission of diseases that can disrupt human societies. The recent COVID-19 outbreak is covered in detail as an example.
For more than a decade, the focus of information technology has been on capturing and sharing data from a patient within an all-encompassing record (a.k.a. the electronic health record, EHR), to promote improved longitudinal oversight in the care of the patient. There are both those who agree and those who disagree as to whether this goal has been met, but it is certainly evolving. A key element to improved patient care has been the automated capture of data from durable medical devices that are the source of (mostly) objective data, from imagery to time-series histories of vital signs and spot-assessments of patients. The capture and use of these data to support clinical workflows have been written about and thoroughly debated. Yet, the use of these data for clinical guidance has been the subject of various papers published in respected medical journals, but without a coherent focus on the general subject of the clinically actionable benefits of objective medical device data for clinical decision-making purposes. Hence, the uniqueness of this book is in providing a single point-of-capture for the targeted clinical benefits of medical device data--both electronic- health-record-based and real-time--for improved clinical decision-making at the point of care, and for the use of these data to address and assess specific types of clinical surveillance. Clinical Surveillance: The Actionable Benefits of Objective Medical Device Data for Crucial Decision-Making focuses on the use of objective, continuously collected medical device data for the purpose of identifying patient deterioration, with a primary focus on those data normally obtained from both the higher-acuity care settings in intensive care units and the lower-acuity settings of general care wards. It includes examples of conditions that demonstrate earlier signs of deterioration including systemic inflammatory response syndrome, opioid-induced respiratory depression, shock induced by systemic failure, and more. The book provides education on how to use these data, such as for clinical interventions, in order to identify examples of how to guide care using automated durable medical device data from higher- and lower-acuity care settings. The book also includes real-world examples of applications that are of high value to clinical end-users and health systems.
For more than a decade, the focus of information technology has been on capturing and sharing data from a patient within an all-encompassing record (a.k.a. the electronic health record, EHR), to promote improved longitudinal oversight in the care of the patient. There are both those who agree and those who disagree as to whether this goal has been met, but it is certainly evolving. A key element to improved patient care has been the automated capture of data from durable medical devices that are the source of (mostly) objective data, from imagery to time-series histories of vital signs and spot-assessments of patients. The capture and use of these data to support clinical workflows have been written about and thoroughly debated. Yet, the use of these data for clinical guidance has been the subject of various papers published in respected medical journals, but without a coherent focus on the general subject of the clinically actionable benefits of objective medical device data for clinical decision-making purposes. Hence, the uniqueness of this book is in providing a single point-of-capture for the targeted clinical benefits of medical device data--both electronic- health-record-based and real-time--for improved clinical decision-making at the point of care, and for the use of these data to address and assess specific types of clinical surveillance. Clinical Surveillance: The Actionable Benefits of Objective Medical Device Data for Crucial Decision-Making focuses on the use of objective, continuously collected medical device data for the purpose of identifying patient deterioration, with a primary focus on those data normally obtained from both the higher-acuity care settings in intensive care units and the lower-acuity settings of general care wards. It includes examples of conditions that demonstrate earlier signs of deterioration including systemic inflammatory response syndrome, opioid-induced respiratory depression, shock induced by systemic failure, and more. The book provides education on how to use these data, such as for clinical interventions, in order to identify examples of how to guide care using automated durable medical device data from higher- and lower-acuity care settings. The book also includes real-world examples of applications that are of high value to clinical end-users and health systems.
The 9th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2015) was held on September 18-20, 2015, Shanghai, China. This proceedings volume assembles papers from various professionals engaged in the fields of Biomedical Engineering, Bioinformatics and Computational Biology. The conference had special sessions on biomedical imaging, biostatistics and biometry, information technology in bioinformatics and environmental pollution & public health.
Mild traumatic brain injury (mTBI), directly related to chronic traumatic encephalopathy, presents a crisis in contact sports, the military, and public health. Mild Traumatic Brain Injury: A Science and Engineering Perspective reviews current understanding of mTBI, methods of diagnosis, treatment, policy concerns, and emerging technologies. It details the neurophysiology and epidemiology of brain injuries by presenting disease models and descriptions of nucleating events, characterizes sensors, imagers, and related diagnostic measures used for evaluating and identifying brain injuries, and relates emerging bioinformatics analysis with mTBI markers. The book goes on to discuss issues with sports medicine and military issues; covers therapeutic strategies, surgeries, and future developments; and finally addresses drug trials and candidates for therapy. The broad coverage and accessible discussions will appeal to professionals in diverse fields related to mTBI, students of neurology, medicine, and biology, as well as policy makers and lay persons interested in this hot topic. Features Summarizes the entire scope of the field of mTBI Details the neurophysiology, epidemiology, and presents disease models and descriptions of nucleating events Characterizes sensors, imagers, and related diagnostic measures and relates emerging bioinformatics analysis with mTBI markers Discusses issues with sports medicine and military issues Covers therapeutic strategies, surgeries, and future developments and addresses drug trials and candidates Dr Mark Mentzer earned his PhD in Electrical Engineering from the University of Delaware. He is a former research scientist at the US Army Research Laboratory where he studied mild traumatic brain injury and developed early-detection brain injury helmet sensors. He is a certified test director and contracting officer representative. He possesses two Level-III Defense Acquisition University Certifications in Science and Technology Management and in Test and Evaluation. During his career, he developed a wide range of sensors and instrumentation as well as biochemical processes to assess brain trauma. Mentzer currently teaches graduate systems engineering and computer science courses at the University of Maryland University College.
In view of better results expected from examination of medical datasets (images) with hybrid (integration of thresholding and segmentation) image processing methods, this work focuses on implementation of possible hybrid image examination techniques for medical images. It describes various image thresholding and segmentation methods which are essential for the development of such a hybrid processing tool. Further, this book presents the essential details, such as test image preparation, implementation of a chosen thresholding operation, evaluation of threshold image, and implementation of segmentation procedure and its evaluation, supported by pertinent case studies. Aimed at researchers/graduate students in the medical image processing domain, image processing, and computer engineering, this book: Provides broad background on various image thresholding and segmentation techniques Discusses information on various assessment metrics and the confusion matrix Proposes integration of the thresholding technique with the bio-inspired algorithms Explores case studies including MRI, CT, dermoscopy, and ultrasound images Includes separate chapters on machine learning and deep learning for medical image processing
The major issues relating to environmental sustainability such as a heavy dependency on fossil fuels, increased greenhouse gas emissions, pollution, global warming and climate change have prompted many efforts around the globe to seek alternative energy sources that have negligible environmental impacts and societal benefits. There is an immense interest in biofuels research throughout the world owing to its massive potential to address environmental concerns. Biofuels have the capacity to supplement current and future energy demands through being blended with fossil fuels or even replacing them completely as drop-in fuels in automobiles as well as for heating and the power industries. Waste biomass, primarily lignocellulosic biomass (e.g. agricultural crop residues, forestry biomass and energy crops) and microalgae can act as some inexpensive renewable bioresources for the production of biofuels and biochemicals. The prime focus of Bioprocessing of Biofuels is to shed light on this significant process, especially through microbial conversion technologies to recover and transform the inedible polysaccharides into hydrocarbon biofuels and bioenergy. The book offers introductory coverage of the most crucial topics as follows: A systematic overview of the state-of-the-art in the production and utilization of biofuels Categorical bioprospecting of bioresources for biofuel production Biomass pretreatment and enzymatic saccharification Bioconversion of waste biomass and algae to liquid and gaseous biofuels New developments in microbial fuel-cell technologies Bioprocessing of Biofuels unites topics related to the cutting-edge applications of bioresources and green technologies to reinvigorate biorefineries, positioning them within a competitive energy market. Written to be instantly applicable, this volume offers a reference book for undergraduate and graduate students, scientific investigators and research scholars around the globe working in the areas relating to energy and fuels.
This book covers topics related to medical practices from communications technology point of view. The book provides detailed inside information about the use of health informatics and emerging technologies for the well-being of patients. Each chapter in this book focuses on a specific development in the use of informatics in healthcare. In general, each chapter uses various emerging technologies such as Internet of Things (IoT), Big Data, Cloud computing, Wireless Body Area Networks (WBAN), for various health-related illness, such as tuberculosis, heart diseases, asthma and various epidemic outbreaks. The book is intended both for communications engineers with a healthcare focus and medical researchers. |
![]() ![]() You may like...
|