![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
Smart materials are the way of the future in a variety of fields, from biomedical engineering and chemistry to nanoscience, nanotechnology, and robotics. Featuring an interdisciplinary approach to smart materials and structures, this second edition of Artificial Muscles: Applications of Advanced Polymeric Nanocomposites has been fully updated to thoroughly review the latest knowledge of ionic polymeric conductor nanocomposites (IPCNCs), including ionic polymeric metal nanocomposites (IPMNCs) as biomimetic distributed nanosensors, nanoactuators, nanotransducers, nanorobots, artificial muscles, and electrically controllable intelligent polymeric network structures. Authored by one of the founding fathers of the field, the book introduces fabrication and manufacturing methods of several electrically and chemically active ionic polymeric sensors, actuators, and artificial muscles, as well as a new class of electrically active polymeric nanocomposites and artificial muscles. It also describes a few apparatuses for modeling and testing various artificial muscles to show the viability of chemoactive and electroactive muscles. It presents the theories, modeling, and numerical simulations of ionic polymeric artificial muscles' electrodynamics and chemodynamics and features current industrial and medical applications of IPMNCs. By covering the fabrication techniques of and novel developments in advanced polymeric nanocomposites, this second edition continues to provides an accessible yet solid foundation to the subject while stimulating further research. Key features: Fully up to date with the latest cutting-edge discoveries in the field Authored by a world expert in the subject area Explores the exciting and growing topic of smart materials in medicine Mohsen Shahinpoor is Professor of Mechanical Engineering at the University of Maine and a leading expert in artificial muscles.
Covid-19 is primarily a respiratory disease which results in impaired oxygenation of blood. The O2-deficient blood then moves through the body, and for the study in this book, the focus is on the blood flowing to the brain. The dynamics of blood flow along the brain capillaries and tissue is modeled as systems of ordinary and partial differential equations (ODE/PDEs). The ODE/PDE methodology is presented through a series of examples, 1. A basic one PDE model for O2 concentration in the brain capillary blood. 2. A two PDE model for O2 concentration in the brain capillary blood and in the brain tissue, with O2 transport across the blood brain barrier (BBB). 3. The two model extended to three PDEs to include the brain functional neuron cell density. Cognitive impairment could result from reduced neuron cell density in time and space (in the brain) that follows from lowered O2 concentration (hypoxia). The computer-based implementation of the example models is presented through routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. Formal mathematics is minimized, e.g., no theorems and proofs. Rather, the presentation is through detailed examples that the reader/researcher/analyst can execute on modest computers. The PDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs, implemented with finite differences. The routines are available from a download link so that the example models can be executed without having to first study numerical methods and computer coding. The routines can then be applied to variations and extensions of the blood/brain hypoxia models, such as changes in the ODE/PDE parameters (constants) and form of the model equations.
White biotechnology is industrial biotechnology dealing with various biotech products through applications of microbes. The main application of white biotechnology is commercial production of various useful organic substances, such as acetic acid, citric acid, acetone, glycerine, etc., and antibiotics like penicillin, streptomycin, mitomycin, etc., and value added product through the use of microorganisms especially fungi and bacteria. The value-added products included bioactive compounds, secondary metabolites, pigments and industrially important enzymes for potential applications in agriculture, pharmaceuticals, medicine and allied sectors for human welfare. In the 21st century, techniques were developed to harness fungi to protect human health (through antibiotics, antimicrobial, immunosuppressive agents, value-added products etc.), which led to industrial scale production of enzymes, alkaloids, detergents, acids, biosurfactants. The first large-scale industrial applications of modern biotechnology have been made in the areas of food and animal feed production (agricultural/green biotechnology) and pharmaceuticals (medical/red biotechnology). In contrast, the production of bio-active compounds through fermentation or enzymatic conversion is known industrial or white biotechnology. The beneficial fungal strains may play important role in agriculture, industry and the medical sectors. The beneficial fungi play a significance role in plant growth promotion, and soil fertility using both, direct (solubilization of phosphorus, potassium and zinc; production of indole acetic acid, gibberellic acid, cytokinin and siderophores) and indirect (production of hydrolytic enzymes, siderophores, ammonia, hydrogen cyanides and antibiotics) mechanisms of plant growth promotion for sustainable agriculture. The fungal strains and their products (enzymes, bio-active compounds and secondary metabolites) are very useful for industry. The discovery of antibiotics is a milestone in the development of white biotechnology. Since then, white biotechnology has steadily developed and now plays a key role in several industrial sectors, providing both high valued nutraceuticals and pharmaceutical products. The fungal strains and bio-active compounds also play important role in the environmental cleaning. This volume covers the latest research developments related to value-added products in white biotechnology through fungi.
Physical oncology has the potential to revolutionize cancer research and treatment. The fundamental rationale behind this approach is that physical processes, such as transport mechanisms for drug molecules within tissue and forces exchanged by cancer cells with tissue, may play an equally important role as biological processes in influencing progression and treatment outcome. This book introduces the emerging field of physical oncology to a general audience, with a focus on recent breakthroughs that help in the design and discovery of more effective cancer treatments. It describes how novel mathematical models of physical transport processes incorporate patient tissue and imaging data routinely produced in the clinic to predict the efficacy of many cancer treatment approaches, including chemotherapy and radiation therapy. By helping to identify which therapies would be most beneficial for an individual patient, and quantifying their effects prior to actual implementation in the clinic, physical oncology allows doctors to design treatment regimens customized to each patient's clinical needs, significantly altering the current clinical approach to cancer treatment and improving the outcomes for patients.
This book covers nanomaterials in tissue engineering for regenerative therapies of heart, skin, eye, skeletal muscle, and the nervous system. The book emphasizes fundamental design concepts and emerging forms of nanomaterials in soft- and hard-tissue engineering. FEATURES Fills a gap in the literature related to the application of nanomaterials in hard- and soft-tissue regeneration, repair, and restructure Discusses a variety of applications, including cardiac, kidney, liver, bone, wound healing, artificial organs, and dental Presents advantages and limitations of various nanomaterials alongside future challenges Functional Nanomaterials for Regenerative Tissue Medicines is essential for academics and industry professionals working in tissue engineering, biomedicine, biopharmaceuticals, and nanotechnology. It is primarily intended for materials researchers (to develop the platforms related to tissue regeneration) as well as clinicians (to learn and apply nanomaterials in their practice) and industrial scientists (to develop commercial blood substitute products).
This book introduces human factors engineering (HFE) principles, guidelines, and design methods for medical device design. It starts with an overview of physical, perceptual, and cognitive abilities and limitations, and their implications for design. This analysis produces a set of human factors principles that can be applied across many design challenges, which are then applied to guidelines for designing input controls, visual displays, auditory displays (alerts, alarms, warnings), and human-computer interaction. Specific challenges and solutions for various medical device domains, such as robotic surgery, laparoscopic surgery, artificial organs, wearables, continuous glucose monitors and insulin pumps, and reprocessing, are discussed. Human factors research and design methods are provided and integrated into a human factors design lifecycle, and a discussion of regulatory requirements and procedures is provided, including guidance on what human factors activities should be conducted when and how they should be documented.This hands-on professional reference is an essential introduction and resource for students and practitioners in HFE, biomedical engineering, industrial design, graphic design, user-experience design, quality engineering, product management, and regulatory affairs. Teaches readers to design medical devices that are safer, more effective, and less error prone; Explains the role and responsibilities of regulatory agencies in medical device design; Introduces analysis and research methods such as UFMEA, task analysis, heuristic evaluation, and usability testing.
Introduces important recent technological advancements in the field Describes the various techniques, platforms, and tools used in biomedical deep learning systems Includes informative case studies that help to explain the new technologies
This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. The author explores the hydrodynamic model of the wake wave in detail and from different points of view, within the framework of its regular propagation, a development suitable for accelerating electrons, and the final tipping effect resulting in unregulated energy transfer to plasma particles. Key selling features: Presents research directly related to the propagation of super-power short laser pulses (subject of the 2018 Nobel Prize in Physics). Presents mathematical modeling of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. Includes studies of large-amplitude plasma oscillations. Most of the presented results are of original nature and have not appeared in the domestic and foreign scientific literature Written at a level accessible for researchers, academia, and engineers.
In nowadays aging society, many people require mobility assistance. Sometimes, assistive devices need a certain degree of autonomy when users' disabilities difficult manual control. However, clinicians report that excessive assistance may lead to loss of residual skills and frustration. Shared control focuses on deciding when users need help and providing it. Collaborative control aims at giving just the right amount of help in a transparent, seamless way. This book presents the collaborative control paradigm. User performance may be indicative of physical/cognitive condition, so it is used to decide how much help is needed. Besides, collaborative control integrates machine and user commands so that people contribute to self-motion at all times. Collaborative control was extensively tested for 3 years using a robotized wheelchair at a rehabilitation hospital in Rome with volunteer inpatients presenting different disabilities, ranging from mild to severe. We also present a taxonomy of common metrics for wheelchair navigation and tests are evaluated accordingly. Obtained results are coherent both from a quantitative and qualitative point of view.
This book is a practical guide for individuals responsible for creating products that are safe, effective, usable, and satisfying in the hands of the intended users. The contents are intended to reduce the number of use errors involving medical devices that have led to injuries and deaths. The book presents the strong connection between user interface requirements and risk management for medical devices and instructs readers how to develop specific requirements that are sufficiently comprehensive and detailed to produce good results - a user-friendly product that is likely to be used correctly. The book's tutorial content is complemented by many real-world examples of user interface requirements, including ones pertaining to an inhaler, automated external defibrillator, medical robot, and mobile app that a patient might use to manage her diabetes. The book is intended for people representing a variety of product development disciplines who have responsibility for producing safe, effective, usable, and satisfying medical devices, including those who are studying or working in human factors engineering, psychology, mechanical engineering, biomedical engineering, systems engineering, software programming, technical writing, industrial design, graphic design, and regulatory affairs.
Globally, there has been a move away from national public sector vaccine development over the past 30 years. Immunization and States: The Politics of Making Vaccines explores vaccine geopolitics, analyzing why, and how this move happened, before looking at the ramifications in the context of Covid-19. This unique book uses eight country studies - looking at Croatia, India, Iran, the Netherlands, Romania, Serbia, Spain, and Sweden - to explore the role of public sector vaccine institutes, past and present. Raising questions about national sovereignty, the erosion of multilateralism, and geopolitics, it also contributes to debates around public interest and privatization in the health sector. An extended introduction sets the chapters in an international context, whilst the epilogue looks forward to the future of vaccine development and production. This is an important book for students, scholars, and practitioners with an interest in vaccine development from a range of fields, including public health, medicine, science and technology studies, history of medicine, politics, international relations, and the sociology of health and illness.
Globally, there has been a move away from national public sector vaccine development over the past 30 years. Immunization and States: The Politics of Making Vaccines explores vaccine geopolitics, analyzing why, and how this move happened, before looking at the ramifications in the context of Covid-19. This unique book uses eight country studies - looking at Croatia, India, Iran, the Netherlands, Romania, Serbia, Spain, and Sweden - to explore the role of public sector vaccine institutes, past and present. Raising questions about national sovereignty, the erosion of multilateralism, and geopolitics, it also contributes to debates around public interest and privatization in the health sector. An extended introduction sets the chapters in an international context, whilst the epilogue looks forward to the future of vaccine development and production. This is an important book for students, scholars, and practitioners with an interest in vaccine development from a range of fields, including public health, medicine, science and technology studies, history of medicine, politics, international relations, and the sociology of health and illness.
This book is a practical guide for individuals responsible for creating products that are safe, effective, usable, and satisfying in the hands of the intended users. The contents are intended to reduce the number of use errors involving medical devices that have led to injuries and deaths. The book presents the strong connection between user interface requirements and risk management for medical devices and instructs readers how to develop specific requirements that are sufficiently comprehensive and detailed to produce good results - a user-friendly product that is likely to be used correctly. The book's tutorial content is complemented by many real-world examples of user interface requirements, including ones pertaining to an inhaler, automated external defibrillator, medical robot, and mobile app that a patient might use to manage her diabetes. The book is intended for people representing a variety of product development disciplines who have responsibility for producing safe, effective, usable, and satisfying medical devices, including those who are studying or working in human factors engineering, psychology, mechanical engineering, biomedical engineering, systems engineering, software programming, technical writing, industrial design, graphic design, and regulatory affairs.
The first book on Ultrafine bubbles (UFBs). Reviews research done on UFBs. Helpful for readers and researchers interested in the fundamentals of this emerging field
This book focusses on the development of biomedical membranes and their applications for (bio)artificial organs. It covers the state of art and main challenges for applying synthetic membranes in these organs. It also highlights the importance of accomplishing an integration of engineering with biology and medicine to understand and manage the scientific, industrial, clinical and ethical aspects of these organs.The compendium consists of 11 chapters, written by world renowned experts in the fields of membrane technology, biomaterials science and technology, cell biology, medicine and engineering. Every chapter describes the clinical needs and the materials, membranes, and concepts required for the successful development of the (bio)artificial organs.This text is suitable for undergraduate and graduate students in biomedical engineering, materials science and membrane science and technology, as well as, for professionals and researchers working in these fields.
This volume is devoted to compounds in which the spiro centre is part of a pyranoid or furanoid or an iminosugar ring. The chapters contributed deal with methodological peculiarities of syntheses of natural and artificial sugar derived spirocycles as well as their biological applications and other utilities including marketed drugs. Carbohydrates are ubiquitous molecules in nature and participate in a vast number of biological interactions. Especially their conjugates with practically all kinds of primary and secondary metabolic small molecules (and also biomacromolecules) representing valuable tools for glycobiology research and also lead compounds for drug discovery. While monosaccharides per se appear as heterocycles, their natural conjugates frequently exhibit spiro(hetero)cyclic derivatives, in many cases of high therapeutical relevance. As a consequence, the field of carbohydrate-spiro-heterocycles attracts intense interest from both chemical and biomedical aspects therefore this volume will be of interest for synthetic and medicinal chemists and (glyco)biologists, as well as researchers involved in various biomedical fields.
This volume presents a collection of peer-reviewed papers on several areas in the field of biomechanics, including biofabrication; biomaterials; cardiovascular biomechanics, biofluids and hemodynamics; biomechanics of the injury/impact; biomechanics of rehabilitation; sports biomechanics; biomechanics of the skull and spine; biomechanics of the musculoskeletal system; biomechanics orofacial; orthopaedic biomechanics; experimental and numerical biomechanics; tissue engineering, and biomedical devices. A collection of novelties and research outcomes presented at the 9th National Biomechanics Congress (CNB 2021, 19-20 February, Porto, Portugal), this book reflects the enthusiasm and intense activity of the Portuguese biomechanical community, as well as the multidisciplinary character of the field. The National Congress of Biomechanics (CNB) is a scientific meeting organized in Portugal under the auspices of the Portuguese Biomechanical Society (SPB).
In healthcare, the realisation of an optimistic prognosis against pessimistic ones depends on current innovations in diagnostic and cost-effective treatment approaches being widely adopted in clinical practice. Utilisation of advanced early and predictive diagnostics, targeted prevention and personalised medical approaches could enable the elderly subpopulation to reach the 100-year age limit in good physical and mental health, as actively contributing members of society. This task requires intelligent political regulations and creation of new guidelines to advance current healthcare systems. In this book, we will collect contributions from several geopolitical regions of Europe, Asia and USA that provide expert opinion on healthcare organisation and outlook as well as economical aspects of personalised medicine.
Covers research on lipid nanosystems for use in cancer therapy and diagnostics, including aspects from physiological barriers in cancer, strategies to overcome these barriers, classical therapeutic strategies, new therapeutic options, and hyphenated approaches for synergic treatments Includes contributions from experts in different topics such as cancer pathology and treatments, triggering strategies, targeting ligands, gene therapy Contains excellent figures illustrating research highlights taken from the latest and most interesting developments in the field of functional lipid nanosystems for cancer therapy
In this book, leading authors in the field discuss development of Ambient Assisted Living. The contributions have been chosen and invited at the 5th AAL congress, Berlin. It presents new technological developments which support the autonomy and independence of individuals with special needs. As the technological innovation raises also social issues, the book addresses micro and macro economical aspects of assistive systems and puts an additional emphasis on the ethical and legal discussion. The presentation is supported by real world examples and applications.
This work represents an inventive attempt to apply recent advances in nanotechnology to identify and characterise novel polymer systems for drug delivery through the skin. Atomic force microscopy (AFM) measurements of the nanoscale mechanical properties of topical, drug-containing polymeric films enabled the author to identify optimal compositions, in terms of flexibility and substantivity, for application to the skin. To elucidate the enhanced drug release from polyacrylate films incorporating medium chain triglycerides, the author combined AFM studies with the complementary technique of Raman micro-spectroscopy. This experimental strategy revealed that the significant increase in the drug released from these films is the result of a nanoscale two-phase structure. Finally, in experiments examining the microporation of skin using femtosecond laser ablation, the author demonstrated that the threshold at which the skin's barrier function is undermined can be dramatically reduced by the pre-application of ink. The approach allows thermal damage at the pore edge to be minimised, suggesting a very real potential for substantially increasing drug delivery in a minimally invasive fashion.
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
Management in the Age of Digital Business Complexity focuses on how the digital age is changing management and vastly speeding up complexity dynamics. The recent coevolution of technologies has dramatically changed in just a few years how people and firms learn, communicate, and behave. Consequently, the process of how firms coevolve and the speed at which they coevolve has been dramatically changed in the digital age, and managerial methods are lagging way behind. Combining his own expertise with that of a number of specialist and international co-authors, McKelvey conveys how companies that fall behind digitally can quickly be driven out of business. The book has been created for academics seeking to upgrade management thinking into the modern digital age and vastly improve the change capabilities of firms facing digital-oriented competition.
Value-Added Biocomposites: Technology, Innovation, and Opportunity explores advances in research, processing, manufacturing, and novel applications of biocomposites. It describes the current market situation, commercial competition, and societal and economic impacts and advantages of substituting biocomposites for conventional composites, including natural fibers and bioplastics. FEATURES Discusses manufacturing and processing procedures that focus on improving physical, mechanical, thermal, electrical, chemical, and biological properties and achieving required specifications of downstream industries and customers Analyzes the wide range of available base materials and fillers of biocomposites and bioplastics in terms of the strength and weaknesses of materials and economic potential in the market Displays special and unique properties of biocomposites in different market sectors Showcases the insight of expert scientists and engineers with first-hand experience working with biocomposites across various industries Covers environmental factors, life cycle assessment, and waste recovery Combining technical, economic, and environmental topics, this work provides researchers, advanced students, and industry professionals a holistic overview of the value that biocomposites add across a variety of engineering applications and how to balance research and development with practical results. |
![]() ![]() You may like...
Grand Ethiopian Renaissance Dam Versus…
Abdelazim M. Negm, Sommer Abdel-Fattah
Hardcover
R11,715
Discovery Miles 117 150
|