Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
As medical devices become more intricate, with an increasing number
of components made from a wide range of materials, it is important
that they meet stringent requirements to ensure that they are safe
to be implanted and will not be rejected by the human body. Joining
and assembly of medical materials and devices provides a
comprehensive overview of joining techniques for a range of medical
materials and applications.
The text covers recent advances in artificial intelligence, smart computing, and their applications in augmenting medical and health care systems. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including electrical, electronics and communication, computer, and biomedical. The book- Presents architecture, characteristics, and applications of artificial intelligence and smart computing in health care systems Highlight privacy issues faced in health care and health informatics using artificial intelligence and smart computing technologies. Discusses nature-inspired computing algorithms for the brain-computer interface. Covers graph neural network application in the medical domain. Provides insights into the state-of-the-art Artificial Intelligence and Smart Computing enabling and emerging technologies. This book text discusses recent advances and applications of artificial intelligence and smart technologies in the field of healthcare. It highlights privacy issues faced in health care and health informatics using artificial intelligence and smart computing technologies. It covers nature-inspired computing algorithms such as genetic algorithms, particle swarm optimization algorithms, and common scrambling algorithms to study brain-computer interfaces. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and biomedical engineering.
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders. It includes application of feed-forward neural networks, deep generative models, convolutional neural networks, graph convolutional networks, and recurrent neural networks in the field of diagnosis of neurological disorders. Along with this, data pre-processing including scaling, correction, trimming, normalization is also included. Offers a detailed description of the deep learning approaches used for the diagnosis of neurological disorders Demonstrates concepts of deep learning algorithms using diagrams, data tables, and examples for the diagnosis of neurodegenerative disorders; neurodevelopmental, and psychiatric disorders. Helps build, train, and deploy different types of deep architectures for diagnosis Explores data pre-processing techniques involved in diagnosis Include real-time case studies and examples This book is aimed at graduate students and researchers in biomedical imaging and machine learning.
This book gathers revised selected papers from the 3rd International Workshop on Gerontechnology, IWoG 2020, held on October 5-6, 2020, in Evora, Portugal. They reports on cutting-edge technologies and optimized workflows for promoting active aging and assisting and elderly people at home, as well as in healthcare centers. It discusses the main challenges in the development, use and delivery of health care services and technologies. Not only they proposes solutions for improving in practice the monitoring and management of health parameters and age-related diseases, yet they also describes improved approaches for helping seniors in their daily tasks and facilitating their communication and integration with assistive technologies, thus improving their quality of life, as well as their social integration. The book provides health professionals, researchers, and service providers with extensive information on the latest trends in the development and practical application of gerontechnology in elderly care.
Biomedical signals provide unprecedented insight into abnormal or anomalous neurological conditions. The computer-aided diagnosis (CAD) system plays a key role in detecting neurological abnormalities and improving diagnosis and treatment consistency in medicine. This book covers different aspects of biomedical signals-based systems used in the automatic detection/identification of neurological disorders. Several biomedical signals are introduced and analyzed, including electroencephalogram (EEG), electrocardiogram (ECG), heart rate (HR), magnetoencephalogram (MEG), and electromyogram (EMG). It explains the role of the CAD system in processing biomedical signals and the application to neurological disorder diagnosis. The book provides the basics of biomedical signal processing, optimization methods, and machine learning/deep learning techniques used in designing CAD systems for neurological disorders.
Carbon is light-weight, strong, conductive and able to mimic
natural materials within the body, making it ideal for many uses
within biomedicine. Consequently a great deal of research and
funding is being put into this interesting material with a view to
increasing the variety of medical applications for which it is
suitable. Diamond-based materials for biomedical applications
presents readers with the fundamental principles and novel
applications of this versatile material.
This new edition presents an authoritative account of the current state of brain biomechanics research for engineers, scientists and medical professionals. Since the first edition in 2011, this topic has unquestionably entered into the mainstream of biomechanical research. The book brings together leading scientists in the diverse fields of anatomy, neuroimaging, image-guided neurosurgery, brain injury, solid and fluid mechanics, mathematical modelling and computer simulation to paint an inclusive picture of the rapidly evolving field. Covering topics from brain anatomy and imaging to sophisticated methods of modeling brain injury and neurosurgery (including the most recent applications of biomechanics to treat epilepsy), to the cutting edge methods in analyzing cerebrospinal fluid and blood flow, this book is the comprehensive reference in the field. Experienced researchers as well as students will find this book useful.
The goal of this volume is to summarize the state-of-the-art in the utilization of computer vision techniques in the diagnosis of skin cancer. Malignant melanoma is one of the most rapidly increasing cancers in the world. Early diagnosis is particularly important since melanoma can be cured with a simple excision if detected early. In recent years, dermoscopy has proved valuable in visualizing the morphological structures in pigmented lesions. However, it has also been shown that dermoscopy is difficult to learn and subjective. Newer technologies such as infrared imaging, multispectral imaging, and confocal microscopy, have recently come to the forefront in providing greater diagnostic accuracy. These imaging technologies presented in this book can serve as an adjunct to physicians and provide automated skin cancer screening. Although computerized techniques cannot as yet provide a definitive diagnosis, they can be used to improve biopsy decision-making as well as early melanoma detection, especially for patients with multiple atypical nevi.
Highlights the contributions of different optimization techniques, decision analytics (predictive, prescriptive, and descriptive), multi-criteria decision making "Helps develop intelligent machines to provide solutions to real-world problems, which are not modelled or are too difficult to model mathematically in hospital management systems " Discusses machine learning-based analytics such as GAN networks, autoencoders, computational imaging, quantum computing will be rigorously applied to smart cloud computing Explores evolutionary algorithms that demonstrate their ability as robust approaches to cope with the fundamental steps of image processing, image analysis, and computer vision pipeline (e.g., restoration, segmentation, registration, classification, reconstruction, or tracking), Creates a bridge between Industrial Engineering concepts and Computational Intelligence for designing complex and convoluted hospital management problems
Most of the real-life signals are non-stationary in nature. The examples of such signals include biomedical signals, communication signals, speech, earthquake signals, vibration signals, etc. Time-frequency analysis plays an important role for extracting the meaningful information from these signals. The book presents time-frequency analysis methods together with their various applications. The basic concepts of signals and different ways of representing signals have been provided. The various time-frequency analysis techniques namely, short-time Fourier transform, wavelet transform, quadratic time-frequency transforms, advanced wavelet transforms, and adaptive time-frequency transforms have been explained. The fundamentals related to these methods are included. The various examples have been included in the book to explain the presented concepts effectively. The recently developed time-frequency analysis techniques such as, Fourier-Bessel series expansion-based methods, synchrosqueezed wavelet transform, tunable-Q wavelet transform, iterative eigenvalue decomposition of Hankel matrix, variational mode decomposition, Fourier decomposition method, etc. have been explained in the book. The numerous applications of time-frequency analysis techniques in various research areas have been demonstrated. This book covers basic concepts of signals, time-frequency analysis, and various conventional and advanced time-frequency analysis methods along with their applications. The set of problems included in the book will be helpful to gain an expertise in time-frequency analysis. The material presented in this book will be useful for students, academicians, and researchers to understand the fundamentals and applications related to time-frequency analysis.
Implantable sensor systems offer great potential for enhanced
medical care and improved quality of life, consequently leading to
major investment in this exciting field. Implantable sensor systems
for medical applications provides a wide-ranging overview of the
core technologies, key challenges and main issues related to the
development and use of these devices in a diverse range of medical
applications.
Describes how nanomaterial functionalization is being used to create more effective sensors. Discusses various synthesis procedures, characterization techniques, and which nanomaterials should be used for sensing applications. Provides an in-depth look into oxide nanostructures, carbon nanostructures, and 2D material fabrication. Explores the challenges of using nanoscale sensors for large-scale industrial applications.
This book offers a historical account of the development of the On-X carbon mechanical heart valve, discussing the steps involved in developing the materials, and describes how the design of the valve has evolved over the years. It explores both the scientific and corporate problems researchers have encountered over the years in the journey of making a mechanical heart valve. The chapters provide a detailed description of the design of the mechanical leaflet-based prosthetic valve, with a particular focus on blood flow characteristics. This book includes an overview of the state-of-the-art in the chemistry and physics of carbon, and compiles the advances in carbon-based technology and its applications in cardiac and thoracic surgery. This is an ideal book for bioengineers working on the chemistry and physics of carbon, and other professionals involved with cardiac and thoracic surgery.
Protein folding is a process by which a protein structure assumes
its functional shape of conformation, and has been the subject of
research since the publication of the first software tool for
protein structure prediction. Protein folding in silico approaches
this issue by introducing an ab initio model that attempts to
simulate as far as possible the folding process as it takes place
in vivo, and attempts to construct a mechanistic model on the basis
of the predictions made. The opening chapters discuss the early
stage intermediate and late stage intermediate models, followed by
a discussion of structural information that affects the
interpretation of the folding process. The second half of the book
covers a variety of topics including ligand binding site
recognition, the "fuzzy oil drop" model and its use in simulation
of the polypeptide chain, and misfolded proteins. The book ends
with an overview of a number of other ab initio methods for protein
structure predictions and some concluding remarks.
Robots have come a long way thanks to advances in sensing and computer vision technologies and can be found today in healthcare, medicine and industry. Researchers have been looking at providing them with senses such as the ability to see, smell, hear and perceive touch in order to mimic and interact with humans and their surrounding environments. Topics covered in this edited book include various types of sensors used in robotics, sensing schemes (e-skin, tactile skin, e-nose, neuromorphic vision and touch), sensing technologies and their applications including healthcare, prosthetics, robotics and wearables. This book will appeal to researchers, scientists, engineers, and graduate and advanced students working in robotics, sensor technologies and electronics, and their applications in robotics, haptics, prosthetics, wearable and interactive systems, cognitive engineering, neuro-engineering, computational neuroscience, medicine and healthcare technologies.
Given the widespread use of polymers in medical devices, the
durability and reliability of this material in use is an area of
critical importance. Durability and reliability of medical polymers
reviews the performance of both bioresorbable and non-bioresorbable
medical polymers.
This book presents and discusses recent scientific progress on Cell and Stem Cell Engineering. It predominantly focuses on Biological, Physical and Technical Basics, and features new trends of research reaching far into the 21st century.
Employed for both cosmetic and reconstructive purposes, breast
implants are one of the most widely-used and controversial
prostheses available. The development of safe, reliable products is
vital to the future of this important field of surgery.
Biomaterials in plastic surgery reviews the history, materials and
safety issues associated with breast implants.
This book explores Autonomic Nervous System (ANS) dynamics as investigated through Electrodermal Activity (EDA) processing. It presents groundbreaking research in the technical field of biomedical engineering, especially biomedical signal processing, as well as clinical fields of psychometrics, affective computing, and psychological assessment. This volume describes some of the most complete, effective, and personalized methodologies for extracting data from a non-stationary, nonlinear EDA signal in order to characterize the affective and emotional state of a human subject. These methodologies are underscored by discussion of real-world applications in mood assessment. The text also examines the physiological bases of emotion recognition through noninvasive monitoring of the autonomic nervous system. This is an ideal book for biomedical engineers, physiologists, neuroscientists, engineers, applied mathmeticians, psychiatric and psychological clinicians, and graduate students in these fields. This book also: Expertly introduces a novel approach for EDA analysis based on convex optimization and sparsity, a topic of rapidly increasing interest Authoritatively presents groundbreaking research achieved using EDA as an exemplary biomarker of ANS dynamics Deftly explores EDA's potential as a source of reliable and effective markers for the assessment of emotional responses in healthy subjects, as well as for the recognition of pathological mood states in bipolar patients
The cross-disciplinary pursuits between modern technology, their computations and applications to the human body have exploded because of rapid developments in computer technology and mathematical computational techniques. This four-volume set, Computational Methods in Biophysics,
Biomaterials, Biotechnology and Medical Systems, represents the
first multi-volume treatment of this significant subject on the
international scene. The work is an indispensable reference source
by leading researchers, and is essential reference work for
academics, practitioners, students and researchers working
with: Volume Synopsis:
Although hip, knee and other orthopaedic implants are
well-established prostheses, much remains to be understood about
how these implants wear in use. This important book summarises the
wealth of recent research in this area and its implications for
implant and joint design.
This study presents an overview of the relationship between biomedical policy and mental health. It explores a broad array of biomedical research and technology issues which impact mental health policy, and it examines how the very conduct of biomedical research and the use of its technology have implications for the mental health of people. Synthesizing mental health history, law, policy, and treatment, Donna Kemp highlights mental health and reproductive technology and research, prevention issues, identification of and intervention in cases of mental disability, and drug treatment and experimentation issues.
This book constitutes the proceedings of the third international conference AsiaHaptics 2018, held in Songdo, Korea. It presents the state-of-the-art of the diverse haptics (touch)-related research, including perception and illusion, development of haptics devices, and applications to a wide variety of fields such as education, medicine, telecommunication, navigation and entertainment. This book is a valuable resource not only for active haptics researchers, but also for general readers wishing to understand the status quo in this interdisciplinary area of science and technology.
The volume is comprehensively covers emerging technologies for health care, various aspects of biomedical research towards understanding of pathophysiology of the diseases, advances in improvement in diagnostic procedures and therapeutic tools, the fundamental role of biomedical research in the development of new medicinal products
Presents recent developments in sustainable materials from various engineering fields and industry applications. Emphasizes analytical strategies, computational, and simulation approaches develop innovative sustainable materials. Discusses an artificial intelligence approach, rapid prototyping, and customized production. Chapters are written by global experts. Includes case studies and research outcomes. |
You may like...
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,308
Discovery Miles 33 080
Advancements in Bio-Medical Image…
Rijwan Khan, Indrajeet Kumar
Hardcover
R8,408
Discovery Miles 84 080
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
Engineered Biomaterials: Progress And…
P A Hassan, Biji Balakrishnan, …
Hardcover
R5,643
Discovery Miles 56 430
AI-Enabled Smart Healthcare Using…
Rahul Kumar Chaurasiya, Dheeraj Agrawal, …
Hardcover
R11,201
Discovery Miles 112 010
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
|