![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
"COVID-19 and Omics Technologies" is a comprehensive, integrative assessment of recent information and knowledge collected on SARS-CoV-2 and COVID-19 during the pandemic based on omics technologies. It demonstrates how omics technologies could better investigate the infectious disease and propose solutions to the current concerns. The value of multi-omics technologies in understanding disease etiology and host response, discovering infection biomarkers and illness prediction, identifying vaccine candidates, discovering therapeutic targets, and tracing pathogen evolution is discussed in this book. These factors combine to make it a valuable resource to enhance understanding of both "Omics technology" and "COVID-19" as a disease. The book covers the most recent understanding of COVID-19 and the applications of cutting-edge studies, making it accessible to a large multidisciplinary readership. The book explains how high-throughput technologies and systems biology might assist to solve the pandemic's challenges and deconstruct and appreciate the substantial contributions that omics technologies have made in predicting the path of this unforeseeable pandemic. Features: In-depth summary of clinical presentation, epidemiological impact, and long-term sequelae of COVID-19 pandemic. A systematic overview of omics-based approaches to the study of COVID-19 biology. Recent research results and some pointers to future advancements in methodologies used. Detailed examples from recent studies on COVID-19 encompassing different omics methodologies. A detailed description of methodologies and notes on the applications of state-of-the-art technologies. This book is intended for scientists who need to understand the biology of COVID-19 from the perspective of omics investigations, as well as researchers who want to employ omics-based technologies in disease biology.
This book presents the state of the art of Internet of Things (IoT) from the perspective of healthcare and Ambient Assisted Living (AAL). It discusses the emerging technologies in healthcare services used for healthcare professionals and patients for enhanced living environments and public health. The topics covered in this book include emerging eHealth IoT applications, Internet of Medical Things, health sensors, and wearable sensors for pervasive and personalized healthcare, and smart homes applications for enhanced health and well-being. The book also presents various ideas for the design and development of IoT solutions for healthcare and AAL. It will be useful for bioengineers and professionals working in the areas of healthcare as well as health informatics.
This book provides an interdisciplinary look at emerging trends in signal processing and biomedicine found at the intersection of healthcare, engineering, and computer science. It examines the vital role signal processing plays in enabling a new generation of technology based on big data, and looks at applications ranging from medical electronics to data mining of electronic medical records. Topics covered include analysis of medical images, machine learning, biomedical nanosensors, wireless technologies, and instrumentation and electrical stimulation. Biomedical Signal Processing: Innovation and Applications presents tutorials and examples of successful applications, and will appeal to a wide range of professionals, researchers, and students interested in applications of signal processing, medicine, and biology.
This book covers some fundamental aspects and frontiers in non-equilibrium physics and soft matter research. Apart from the basic knowledge on nonlinear statistic physics, dynamics, computer simulations, and main approaches and emerging systems in soft matter research, particular attention is devoted to new conceptual flexible functional materials and the enriching areas, such as silk meso-molecular materials, molecular gels, liquid crystals, flexible electronics and new types of catalysis, etc. One of the main characteristics of this book is to start with the structure formation dynamics and the correlation between the structures and macroscopic performance. This lays down the foundation for the mesoscopic materials design and functionalization. The book is intended for upper undergraduate students, graduate students, and researchers who are interested in soft matter researches. As one of main references, the basic principles and technologies of computer simulations and experimental methods adopted in soft matter research are also explained. Illustrations and tables are included in this book to improve the readability, and examples and exercises are added to help understanding.
This volume gives an overview on recent developments for various applications of modern engineering design. Different engineering disciplines such as mechanical, materials, computer and process engineering provide the foundation for the design and development of improved structures, materials and processes. The modern design cycle is characterized by an interaction of different disciplines and a strong shift to computer-based approaches where only a few experiments are performed for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also connected to environmental demands. In the transportation industry (e.g. automotive or aerospace), this is connected with the demand for higher fuel efficiency, which is related to the operational costs and the lower harm for the environment. One way to fulfil such requirements are lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector. In this book, many examples of the mentioned design applications are presented.
The COVID-19 pandemic that started in 2019-2020 has led to a gigantic increase in modeling and simulation of infectious diseases. There are numerous topics associated with this epoch-changing event, such as (a) disease propagation, (b) transmission, (c) decontamination, and (d) vaccines. This is an evolving field. The targeted objective of this book is to expose researchers to key topics in this area, in a very concise manner. The topics selected for discussion have evolved with the progression of the pandemic. Beyond the introductory chapter on basic mathematics, optimization, and machine learning, the book covers four themes in modeling and simulation infectious diseases, specifically: Part 1: Macroscale disease propagation, Part 2: Microscale disease transmission and ventilation system design, Part 3: Ultraviolet viral decontamination, and Part 4: Vaccine design and immune response. It is important to emphasize that the rapid speed at which the simulations operate makes the presented computational tools easily deployable as digital twins, i.e., digital replicas of complex systems that can be inexpensively and safely optimized in a virtual setting and then used in the physical world afterward, thus reducing the costs of experiments and also accelerating development of new technologies.
The rapid urbanization and industrialization of developing countries across the globe have necessitated for substantial resource utilization and development in the areas of Healthcare, Environment, and Renewable energy. In this context ,this resourceful book serves as a definitive source of information for the recent developments in application of microbial enzymes in various sectors. It covers applications in fermentation processes and their products, extraction and utilisation of enzymes from various sources and their application in health and biomass conversion for production of value added products. Different chapters discuss various areas of bioprospecting in enzyme technology, and describe why these are the mainstays for industrial production of value added products. The rich compilation of the cutting-edge advances and applications of the modern industrial based techniques hold feasible solutions for a range of current issues in enzyme technology. This book will be of particular interest for scientists, academicians, technical resource persons, engineers and members of industry. Undergraduate and graduate students pursuing courses in the area of industrial biotechnology will find the information in the book valuable. General readers having interest towards biofuels, enzyme technology, fermented food and value added products, phytochemicals and phytopharmaceutical products will also find the book appealing. Readers will discover modern concepts of enzymatic bioprocess technology for production of therapeutics and industrial value added products.
This book reports on the state of the art in the field of aerial-aquatic locomotion, focusing on the main challenges concerning the translation of this important ability from nature to synthetic systems, and describing innovative engineering solutions that have been applied in practice by the authors at the Aerial Robotics Lab of Imperial College London. After a general introduction to aerial-aquatic locomotion in nature, and a summary of the most important engineering achievements, the book introduces readers to important physical and mathematical aspects of the multimodal locomotion problem. Besides the basic physics involved in aerial-aquatic locomotion, the role of different phenomena happening in fluids, or those due to structural mechanics effects or to power provision, are presented in depth, across a large dimension range, from millimeters to hundreds of meters. In turn, a practice-oriented discussion on the obstacles and opportunities of miniaturization, for both robots and animals is carried out. This is followed by applied engineering considerations, which describe relevant hardware considerations involved in propulsion, control, communication and fabrication. Different case studies are analyzed in detail, reporting on the latest research carried out by the authors, and covering topics such as propulsive aquatic escape, the challenging mechanics of water impact, and a hybrid sailing and flying aircraft. Offering extensive and timely information on the design, construction and operation of small-scale robots, and on multimodal locomotion, this book provides researchers, students and professionals with a comprehensive and timely reference guide to the topic of aerial-aquatic locomotion, and the relevant bioinspired approaches. It is also expected to inspire future research and foster a stronger multidisciplinary discussion in the field.
This book addresses emerging questions concerning who should bear responsibility for shouldering risk, as well as the viability of existing and experimental governance mechanisms in connection with new technologies. Scholars from 14 jurisdictions unite their efforts in this edited collection to provide a comparative analysis of how various legal systems are tackling the challenges produced by the legal aspects of genetic testing in insurance and employment. They cover the diverse set of norms that surround this issue, and share insights into relevant international, regional and national incursions into the field. By doing so, the authors offer a basis for comparative reflection, including on whether transnational standard setting might be useful or necessary for the legal aspects of genetic testing as they relate to the insurance and employment contexts. The respective texts cover a broad range of topics, including the prevalence of genetic testing in the contexts of insurance and employment, and policy factors that might affect this prevalence, such as the design of national health or social insurance systems, of private insurance schemes or the availability of low-cost direct-to-consumer genetic testing. Further, the field of genetics is gaining in importance at the international and regional levels. Relevant concepts - mainly genetic tests and genetic data/information - have been internationally defined, and these definitions have influenced definitions adopted nationally. International law also recognizes a "special status" for human genetic data. The authors therefore also consider these definitions and the recognition of the special status of human genetic data within regional and national legal orders. They investigate the range of norms that specifically address the use of genetic testing in employment and insurance, encompassing international sources - including human rights norms - that may be binding or non-binding, as well national statutory, regulatory and soft-law mechanisms. Accordingly, some of the texts examine general frameworks relevant to genetic testing in each country, including those that stem from general anti-discrimination rules and norms protecting rights to autonomy, self-determination, confidentiality and privacy. In closing, the authors provide an overview of the efficiency of their respective legal regimes' approaches - specific and generalist - to genetic testing or disclosure of genetic information in the employment or insurance contexts, including the effect of lack of legal guidance. In this regard, some of the authors highlight the need for transnational action in the field and make recommendation for future legal developments.
This book delves into the field of immobilizing biologically active and non-active molecules. It discusses the designing strategy of immobilization and the current state-of-the-art applications for advancing biomedical, agricultural, environmental and industrial practices. It focuses on aspects ranging from fundamental principles to current technological advances at multi-scale levels (macro, micro, and nano) which are suitable for cell, enzyme, and nano-catalyst based applications. Written by experts from across the globe, the contents deal with illustrated examples of molecular and cellular interactions with materials/scaffolds and discussions on factors that can affect the functionality and yield of the process. With its discussions on material science, design of delivery vehicles, separation science, additive manufacturing, agriculture and environmental science, this book will be a useful reference for researchers across multiple disciplines.
The 4th World Congress on Genetics, Geriatrics and Neurodegenerative Diseases Research (GeNeDis 2020) focuses on the latest major challenges in scientific research, new drug targets, the development of novel biomarkers, new imaging techniques, novel protocols for early diagnosis of neurodegenerative diseases, and several other scientific advances, with the aim of better, safer, and healthier aging. Computational methodologies for implementation on the discovery of biomarkers for neurodegenerative diseases are extensively discussed. This volume focuses on the sessions from the conference regarding computational biology and bioinformatics.
The future of gene editing in humans will involve the use of CRISPR. How we think about the combination of the scientific, ethical, and moral aspects of this technology is paramount to the success or failure of CRISPR in humans. Unfortunately, the current scientific discussion around CRISPR in humans has left ethics trailing behind due to the rapid pace of innovation. New modes of ethics and stakeholder participation are needed to keep pace with rapid scientific advances and provide the necessary policy and ethical frameworks necessary to help CRISPR flourish as an important health care tool to treat human disease. This requires intense interdisciplinary collaboration and discussion between scientists and philosophers, policymakers and legal scholars, and the public. Dr. Michael W. Nestor (a neuroscientist who actively uses CRISPR in pre-clinical research) and Professor Richard Wilson (a philosopher who focuses on anticipatory ethics) set out to develop a new ethical approach considering the use of CRISPR in human targeted therapies. The field of anticipatory ethics is uniquely poised to tackle questions in fast-evolving technical areas where the pace of innovation outstrips traditional philosophical approaches. Furthermore, because of its "anticipatory" nature, this type of analysis provides the opportunity to look ahead and into the future concerning potential uses of CRISPR in humans, uses that are not currently possible. Nestor and Wilson collaborate both scientifically and philosophically in this book to forecast potential outcomes as the scientific and medical community goes beyond using CRISPR to correct genes that underlie diseases where a single gene is involved. Instead, Nestor and Wilson envision CRISPR in complex, multigenic disorders with a specific focus on the use of CRISPR to edit genes involved in mental traits like IQ or other cognitive characteristics. They argue that the use of CRISPR to modify genes that are potentially important for mental traits represents a particular category for special consideration from scientists, policymakers, the public, and other stakeholders. Nestor and Wilson explain why using CRISPR to alter mental states is very different from treating a disease like cancer by combining the latest scientific advancements with anticipatory ethics and philosophical phenomenology. Their analysis considers the role that mental states play in personhood and the lived experience-as genes that can change mental/cognitive attributes like IQ have wide-ranging effects on the lived experience in ways that are categorically different from other attributes. This book was written to set a non-exhaustive framework for shared understanding and discussion across disciplines and appeal to scientists and non-scientists alike. This appeal is made inclusively, inviting all stakeholders to engage in active dialogue about the appropriate context for using CRISPR and other gene-editing technologies in humans. It provides policy analysis and recommendations for assuring the most inclusive, equitable, and ethically sound use of CRISPR in humans, concerning its positive potential to treat mental conditions like depression, schizophrenia, Alzheimer's disease, autism, and the potential to induce other cognitive enhancements.
This contributed volume reviews the latest advances in all the new technologies currently developed for MagnetoEncephaloGraphy (MEG) recordings, as well as sensor technologies and integrated sensor arrays for on-scalp MEG. The book gives an account of the first MEG imaging studies and explores the new field of feasible, experimental paradigms of on-scalp MEG. This is an ideal book for engineers, researchers, and students in the neurosciences interested in MEG imaging.
This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging. Also there will be a special track on computer-aided diagnosis on COVID-19 by CT and X-rays images. Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human-computer interaction, databases, and performance evaluation.
This book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance by reducing drag, increasing lift or thrust and reducing noise under critical conditions that may result in massive separation, strong vortex dynamics, amplification of harmful instabilities (flutter, buffet), and flow -induced vibrations. Theory together with large-scale simulations and experiments have revealed new features of turbulent flow in the boundary layer over bodies and in thin shear layers immediately downstream of separation. New insights into turbulent flow interacting with actively deformable structures, leading to new ways of adapting and controlling the body shape and vibrations to respond to these critical conditions, are investigated. The book covers new features of turbulent flows in boundary layers over wings and in shear layers immediately downstream: studies of natural and artificially generated fluctuations; reduction of noise and drag; and electromechanical conversion topics. Smart actuators as well as how smart designs lead to considerable benefits compared with conventional methods are also extensively discussed. Based on contributions presented at the IUTAM Symposium "Critical Flow Dynamics involving Moving/Deformable Structures with Design applications", held in June 18-22, 2018, in Santorini, Greece, the book provides readers with extensive information about current theories, methods and challenges in flow and turbulence control, and practical knowledge about how to use this information together with smart and bio-inspired design tools to improve aerodynamic and hydrodynamic design and safety.
This book provides a comprehensive overview of recent novel coronavirus (SARS-CoV-2) infection and discusses developments in the field of nanoparticle/inorganic/organic materials development for antiviral application, therapeutic applications, PPE kit formulations and inclusion of simulated data. The contents focus on measures to keep the infections in check, materials aspects for detection and monitoring, AI modeling for prediction of spread of the virus, among others. This book will be a useful reference for researchers, scientists and policy makers alike.
This book presents a novel continuum finite deformation framework addressing the complex interactions among electrostatics, species transport, and mechanics in solid networks immersed in a fluid phase of solvent and ions. Grounded on cutting-edge multiphysics theories for soft active materials, the proposed model is primarily applied to ionic polymer metal composites (IPMCs). First, the influence of shear deformation on the IPMC response is analyzed through semi-analytical solutions obtained via the method of matched asymptotic expansions. Second, the novel electrochemo-poromechanical theory is used to predict the curvature relaxation and electric discharge that are observed in IPMC actuation and sensing, respectively, under a sustained stimulus. This newly formulated theory is, in turn, applied to biological cell clusters. Here, important mechanical considerations are integrated into classical bioelectrical models, thus offering novel insights into the interplay of mechanical and electrical signaling in the coordination of developmental processes.
This book focuses on applications of three-dimensional (3D) printing in healthcare. It first describes a range of biomaterials, including their physicochemical and biological properties. It then reviews the current state of the art in bioprinting techniques and the potential application of bioprinting, computer-aided additive manufacturing of cells, tissues, and scaffolds to create organs in regenerative medicine. Further, it discusses the orthopedic applications of 3D printing in the design and fabrication of dental implants, and the use of 3D bioprinting in oral and maxillofacial surgery and in tissue and organ engineering. Lastly, the book examines the 3D printing technologies that are used for the fabrication of the drug delivery system. It also explores the current challenges and the future of 3D bioprinting in medical sciences, as well as the market demand.
This textbook fills a gap to supply students with the fundamental principles and tools they need to perform the quantitative analyses of the neuroelectrophysiological approaches, including both conventional and emerging ones, prevalently used in neuroscience research and neuroprosthetics. The content grows out of a course on Neuroengineering and Neuroprosthetics, which the author has taught already several times. The key problems the author addresses include (1) the universal operating mechanisms of neuroelectrophysiological approaches, (2) proper configuration of each approach, and (3) proper interpretation of the resulting signals. Efforts are made both to extract the universal principles underlying this common class of approaches and discern the unique properties of each individual approach. To address these important problems, equivalent electrical circuit modeling and signal analysis are used to unravel the functioning mechanisms and principles and provide sound interpretations to the associated signals and phenomena. This book aims to derive analytical solutions to these equivalent circuits, which can offer clear and complete mechanistic insights to the underlying biophysics.
This book compiles the latest research on the multifarious roles of microbial enzymes, and provides an overview of microbial enzymes and biotechnologies. It discusses the use of microbial enzymes in innovative areas like nanomedicine and synthetic biotechnology, as well as the use of starch digesting enzymes and bioactive proteins as biotherapeutics, all of which have applications in modern drug discovery processes. The book also examines the concept of microbial biotransformation and protein engineering, and covers topics such as the immobilization of therapeutic enzymes, bioengineering of enzymes for bioactive compounds, the production of hydrolytic and oxidative enzymes from plant raw materials, and prebiotics and probiotics. Given its multidisciplinary scope, this book will appeal to researchers and industry experts in the fields of microbiology, biotechnology and molecular medicine.
This book comprises select proceedings of the international conference ETAEERE 2020. This volume covers latest research in advanced approaches in automation, control based devices, and adaptive learning mechanisms. The contents discuss the complex operations and behaviors of different systems or machines in different environments. Some of the areas covered include control of linear and nonlinear systems, intelligent systems, stochastic control, knowledge-based systems applications, fault diagnosis and tolerant control, and real-time control applications. The contents of this volume can be useful for researchers as well as professionals working in control and automation.
This book provides an in-depth description and discussion of different multi-modal diagnostic techniques for cancer detection and treatment using exact optical methods, their comparison, and combination. Coverage includes detailed descriptions of modern state of design for novel methods of optical non-invasive cancer diagnostics; multi-modal methods for earlier cancer diagnostic enhancing the probability of effective cancer treatment; modern clinical trials with novel methods of clinical cancer diagnostics; medical and technical aspects of clinical cancer diagnostics, and long-term monitoring. Biomedical engineers, cancer researchers, and scientists will find the book to be an invaluable resource. Introduces optical imaging strategies; Focuses on multimodal optical diagnostics as a fundamental approach; Discusses novel methods of optical non-invasive cancer diagnostics.
This is the first book about the "Kenzan" method for scaffold-free biofabrication, which does not rely on biomaterials as scaffolds to ensure correct multicellular spheroid positioning for building three dimensional construct only made from cells. The book explains the basic principles and concepts of the microneedle-based ("Kenzan") method of building surgically-implantable tissue constructs using robotic cell spheroid-based three-dimensional bioprinting, a novel technology that opens up unique opportunities for the bioengineering of tissues and organs. First book on the novel Kenzan method of tissue engineering; Explains basic concepts and applications for organ regeneration modeling; Introduces a unique robotic system for scaffold-free cell construction.
This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging. Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human-computer interaction, databases, and performance evaluation.
Urban parks and gardens are where people go to reconnect with nature and destress. But do they all provide the same benefits or are some better than others? What specific attributes set some green spaces apart? Can we objectively measure their impact on mental health and well-being? If so, how do we use this evidence to guide the design of mentally healthy cities? The Contemplative Landscape Model unveils the path to answer these questions. Rooted in landscape architecture and neuroscience, this innovative concept is described for the first time in an extended format, offering a deep dive into contemplative design and the science behind it. In the face of the global mental health crisis, and increasing disconnection from nature, design strategies for creating healthier urban environments are what our cities so sorely need. The book delves into the neuroscience behind contemplative landscapes, their key spatial characteristics, and practical application of the Contemplative Landscape Model through case studies from around the world. Landscape architects, urban planners, students, land managers, and anyone interested in unlocking the healing power of landscapes will find inspiration here. |
You may like...
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R3,950
Discovery Miles 39 500
Computational Intelligence and…
Witold Pedrycz, Giancarlo Succi, …
Hardcover
|