![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
This book presents recent outcomes of the collaborative "Tricorder" project, which brings together partners from industry, research institutes and hospitals to deliver an easy contactless alternative for electrocardiograms (ECG). Featuring contributions investigating the possible applications of laser Doppler vibrometry (LDV) signals for the remote measurement of vital parameters of the heart, the book provides insights into the vision and the history of the "Tricorder" project and the basic differences between the vibrocardiograms and electrocardiograms. It also discusses topics such as signal processing, heartbeat measurement techniques, respiration frequency and oxygen saturation determination, with a particular focus on the diagnostic value of the method presented, e.g., diagnosis of atrial fibrillation and estimation of the oxygen saturation in premature infants. Further, the authors review the advantages and drawbacks of the new method and the specific fields of application. This book will appeal to researchers and industry leaders interested in laser remote sensing for medical applications as well as medical professionals curious about new healthcare technologies.
This study presents an overview of the relationship between biomedical policy and mental health. It explores a broad array of biomedical research and technology issues which impact mental health policy, and it examines how the very conduct of biomedical research and the use of its technology have implications for the mental health of people. Synthesizing mental health history, law, policy, and treatment, Donna Kemp highlights mental health and reproductive technology and research, prevention issues, identification of and intervention in cases of mental disability, and drug treatment and experimentation issues.
This book gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments. The contents reflect the outcomes of the activities of RAAD (International Conference on Robotics in Alpe-Adria-Danube Region) in 2020.
In recent years there has been rapid progress in the development of signal processing in general, and more specifically in the application of signal processing and pattern analysis to biological signals. Techniques, such as parametric and nonparametric spectral estimation, higher order spectral estimation, time-frequency methods, wavelet transform, and identifi cation of nonlinear systems using chaos theory, have been successfully used to elucidate basic mechanisms of physiological and mental processes. Similarly, biological signals recorded during daily medical practice for clinical diagnostic procedures, such as electroen cephalograms (EEG), evoked potentials (EP), electromyograms (EMG) and electrocardio grams (ECG), have greatly benefitted from advances in signal processing. In order to update researchers, graduate students, and clinicians, on the latest developments in the field, an International Symposium on Processing and Pattern Analysis of Biological Signals was held at the Technion-Israel Institute of Technology, during March 1995. This book contains 27 papers delivered during the symposium. The book follows the five sessions of the symposium. The first section, Processing and Pattern Analysis of Normal and Pathological EEG, accounts for some of the latest developments in the area of EEG processing, namely: time varying parametric modeling; non-linear dynamic modeling of the EEG using chaos theory; Markov analysis; delay estimation using adaptive least-squares filtering; and applications to the analysis of epileptic EEG, EEG recorded from psychiatric patients, and sleep EEG."
Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks.
Thermal Ablation Therapy: Theory and Simulation includes detailed theoretical and technical concepts of thermal ablation therapy in different body organs. Concepts of ablation technology based on different thermal ablation methods are introduced, along with changes in the tissues' mechanical properties due to thermal denaturation. The book emphasizes the mathematical and engineering concepts of RF and MW energy propagation through tissues and where high heating rates produced by MW systems can overcome the heat-sink effects from nearby vessels. The design and tuning of the MW antennas to deliver energy efficiently to specific organ systems such as the liver or lung is also covered. Other sections cover the computational modeling of radiofrequency ablation and microwave ablation procedures for developing and implementing new efficient ablation in clinical systems, numerical simulations for different scenarios of different organs with different size using RF and MW ablation systems with different antennas'/probes design and configurations, and numerical techniques for temperature profile in tissues.
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis.
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines.
Handbook of Decision Support Systems for Neurological Disorders provides readers with complete coverage of advanced computer-aided diagnosis systems for neurological disorders. While computer-aided decision support systems for different medical imaging modalities are available, this is the first book to solely concentrate on decision support systems for neurological disorders. Due to the increase in the prevalence of diseases such as Alzheimer, Parkinson's and Dementia, this book will have significant importance in the medical field. Topics discussed include recent computational approaches, different types of neurological disorders, deep convolution neural networks, generative adversarial networks, auto encoders, recurrent neural networks, and modified/hybrid artificial neural networks.
Web Semantics strengthen the description of web resources to exploit them better and make them more meaningful for both humans and machines, thereby contributing to the development of a knowledgeintensive data web. The world is experiencing the movement of concept from data to knowledge and the movement of web from document model to data model. The underlying idea is making the data machine understandable and processable. In the light of these trends, conciliation of Semantic and the Web is of paramount importance for further progress in the area. Web Semantics: Cutting Edge and Future Directions in Healthcare describes the three major components of the study of Semantic Web, namely Representation, Reasoning, and Security with a special focus on the healthcare domain. This book summarizes the trends and current research advances in web semantics, emphasizing the existing tools and techniques, methodologies, and research solutions. It provides easily comprehensible information on Web Semantics including semantics for data and semantics for services.
This book relates to the analysis and the development of methods to for a nerve-machine interface. Peripheral nerves, both somatic and autonomic, carry signals related to control and the status of the organs. Nerves are made up of many fascicles, each surrounded by protective membranes. The goal is to provide a theoretical and experimental understanding of how one can recover neural signals from the various fascicles or selectively control the activation of these fascicles.
This book reports on the latest advances in the study of biomedical signal processing, and discusses in detail a number of open problems concerning clinical, biomedical and neural signals. It methodically collects and presents in a unified form the research findings previously scattered throughout various scientific journals and conference proceedings. In addition, the chapters are self-contained and can be read independently. Accordingly, the book will be of interest to university researchers, R&D engineers and graduate students who wish to learn the core principles of biomedical signal analysis, algorithms, and applications, while also offering a valuable reference work for biomedical engineers and clinicians who wish to learn more about the theory and recent applications of neural engineering and biomedical signal processing.
Advances in Polymeric Nanomaterials for Biomedical Applications examines advanced polymer synthetic strategies for developing novel biomaterials for use in medicine. With a strong focus on fundamentals and structure, the authors also explore their fabrication, along with their current and potential biomedical applications. The book begins with a look at the fundamentals of polymeric nanomaterials and their properties and then discusses the design of biomaterials and their applications in drug delivery. Further chapters explore important applications, such as imaging and regenerative medicine, including current challenges and future trends. This valuable resource is especially useful for materials and polymer scientists, and bioengineers wishing to broaden their knowledge of polymeric nanobiomaterials.
Nanotechnology is expected to bring revolutionary changes in a variety of fields. This volume describes nanoparticles and their biomedical applications, and covers metal nanoparticles, metal oxide nanoparticles, rare earth based nanoparticles and graphene oxide nanoparticles. It elaborates on a number of biomedical applications, including therapeutic applications. It addresses the topic of green synthesis, in view of increasing health and environmental concerns.
Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.
Gellan Gum as a Biomedical Polymer details key topics and fundamental aspects of gellan gum and its biomedical applications in drug delivery, proteins and peptides delivery, cell delivery, tissue engineering, wound dressings and enzyme immobilizations in developing high quality products. Sections introduce gellan gum, its source, production and gelation mechanism, discuss biomedical materials, and provides ways it can be used for biomedical applications. The book also examines the used of gellan gum as pharmaceutical excipients for drug delivery. Future developments and challenges round out the book’s coverage. With contributions for an international group of experts, this book is a useful reference for scientists, researchers and those in industry engaged in biomedical product development using natural polysaccharides.
Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data.
This book highlights leading-edge research in multi-disciplinary areas in Physics, Engineering, Medicine, and Health care, from the 6th IRC Conference on Science, Engineering and Technology (IRC-SET 2020) held in July 2020 at Singapore. The papers were shortlisted after extensive rounds of reviews by a panel of esteemed individuals who are pioneers in their domains. The book also contains excerpts of the speeches by eminent personalities who graced the occasion, thereby providing written documentation of the event.
This book comprises a collection of papers presented at the International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2021), held at Technical University of Sofia, Sofia, Bulgaria, during 08-10 July 2021. The book covers research papers in the field of N-dimensional multicomponent image processing, multidimensional image representation and super-resolution, 3D image processing and reconstruction, MD computer vision systems, multidimensional multimedia systems, neural networks for MD image processing, data-based MD image retrieval and knowledge data mining, watermarking, hiding and encryption of MD images, MD image processing in robot systems, tensor-based data processing, 3D and multi-view visualization, forensic analysis systems for MD images and many more.
Second-Order Consensus of Continuous-Time Multi-Agent Systems focuses on the characteristics and features of second-order agents, communication networks, and control protocols/algorithms in continuous consensus of multi-agent systems. The book provides readers with background on consensus control of multi-agent systems and introduces the intrinsic characteristics of second-order agents' behavior, including the development of continuous control protocols/algorithms over various types of underlying communication networks, as well as the implementation of computation- and communication-efficient strategies in the execution of protocols/algorithms. The book's authors also provide coverage of the frameworks of stability analysis, algebraic criteria and performance evaluation. On this basis, the book provides an in-depth study of intrinsic nonlinear dynamics from agents' perspective, coverage of unbalanced directed topology, random switching topology, event-triggered communication, and random link failure, from a communication networks' perspective, as well as leader-following control, finite-time control, and global consensus control, from a protocols/algorithms' perspective. Finally, simulation results including practical application examples are presented to illustrate the effectiveness and the practicability of the control protocols and algorithms proposed in this book.
Additive Manufacturing and 3D Printing Technology: Principles and Applications consists of the construction and working details of all modern additive manufacturing and 3D-printing technology processes and machines, while also including the fundamentals, for a well-rounded educational experience. The book is written to help the reader understand the fundamentals of the systems. This book provides a selection of additive manufacturing techniques suitable for near-term application with enough technical background to understand the domain, its applicability, and to consider variations to suit technical and organizational constraints. It highlights new innovative 3D-printing systems, presents a view of 4D printing, and promotes a vision of additive manufacturing and applications toward modern manufacturing engineering practices. With the block diagrams, self-explanatory figures, chapter exercises, and photographs of lab-developed prototypes, along with case studies, this new textbook will be useful to students studying courses in Mechanical, Production, Design, Mechatronics, and Electrical Engineering.
The original role of RP was to confirm the shape and feel of concept design, but innovations in RP now allow for the development of sophisticated medical devices such as catheters, stents, drug delivery systems, syringes and cardio-vascular devices, and more. RP has moved beyond medical devices, as surgeons now regularly use RP models to brainstorm strategies for surgeries. This book presents new uses for rapid prototyping in state-of-the-art medical applications.
Globalization and industrialization involve a number of reactions, products, extractions, and separations that require the use of organic solvents. These solvents are responsible for a number of ecological concerns, including atmospheric and land toxicity. Conventional organic solvents are regarded as volatile organic compounds; some are even limited due to their potential for ozone layer depletion. While supercritical liquids exhibit physical properties that could make them ideal substitutes for these volatile compounds, there is particular interest in the use of carbon dioxide as a solvent of crude material. In particular, carbon dioxide has apparent 'green' properties, like its noncombustible nature, the fact that it is generally nonpoisonous, and its relative inertness. Thus, the use of supercritical carbon dioxide can provide practical improvements to the sustainability of industrial products and processes. This book provides in-depth literature in the area of industrial green processes, focusing on the separation, purification, and extraction of compounds utilizing supercritical carbon dioxide as a green solvent.
Tens of thousands of different animal species live on this planet, having survived for millions of years through adaptation and evolution, which has given them a vast variety of structures and functions. Biomechanical studies of animals swimming and flying can aid understanding of the mechanisms that enable them to move effectively and efficiently in fluids . Based on such understandings and analyses, we can aim to develop environmentally friendly machines that emulate these natu ral movements. The Earth Summit in Rio de Janeiro in 1992 agreed major treaties on biological diversity, addressing the comb ined issues of environmental protection and fair and equitable economic development. With regard to coastal environments, increasing biological diversity has begun to play an important role in reestablishing stable and sustainable ecosystems. This approach has begun to influence research into the behavior of aquatic species, as an understanding of the history of an individual aquatic species is indispensable in constructing an environmental assessment mod el that includes the physical, chemical, and biological effects of that species . From an engineering viewpoint, studying nature's biological diversity is an opportunity to reconsider mechanical systems that were systematically constructed in the wake of the Industrial Revolution. We have been accumulating knowledge of the sys tems inherent in biological creatures and using that knowledge to create new, envi ronmentally friendly technologies.
The development of a bio-engineered pacemaker is of substantial clinical and also scientific interest because it promises to overcome several limitations of electronic pacemakers. Moreover it may answer the longstanding question of whether the complex structure of the sinus node is indeed a prerequisite for reliable pacemaking, or simpler structures might work as well. This book gives an overview of the current state-of-the-art of creating a bio-engineered pacemaker. It shows the approaches to develop of genetic and cell-based engineering methods suitable to implement them with safety and stability. It also illuminates the problems that need to be solved before bio-pacemaking can be considered for clinical use. |
You may like...
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Healthcare Data Analytics and Management
Nilanjan Dey, Amira Ashour, …
Paperback
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Biomarkers in Cancer Detection and…
Ranbir Chander Sobti, Masatoshi Watanabe, …
Paperback
R3,268
Discovery Miles 32 680
|