Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes -- Processing and Characterization and Applications -- this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. An exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses: * Synthesis, fabrication, and characterization of nanocoatings * The sol-gel method and electrophoretic deposition * Thermal and plasma spraying * Hydroxyapatite and organically modified coatings * Bioceramics and bioactive glass-based coatings * Hydrothermal crystallization and self-healing effects * Physical and chemical vapor deposition * Layered assembled polyelectrolyte films With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes -- Processing and Characterization and Applications -- this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. Building on the theoretical and methodological fundamentals of coatings as presented in the first volume, Applications covers: * Biological/biomedical implants and other applications of carbon-based materials * Control of drug release from coatings * MIcrofluidic and biosensing/bioactive coatings and applications * Surfaces and coatings of orthopedic, dental, and other implants * Sol-gel-derived hydroxyapatite coatings on metallic implants * Impedance spectroscopy With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field. The set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine. Topics include: * Implants and implanted devices * Organically modified coatings * Orthopedic and dental implants * Control of drug release * Biosensing and bioactive coatings * Thermal and plasma spraying * Hydrothermal, physical, and chemical vapor deposition * Impedance spectroscopy * Hydroxyapatite nanocoatings With chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes -- Processing and Characterization and Applications -- to cover a subject that is truly fundamental to the success of biotechnological pursuits.
Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.
In a time of ongoing pandemic when well-being is a priority this volume presents latest works across disciplines associated to Virtual Patients, Gamification and Simulation. Chapters herein present international perspectives with authors from around the globe contributing to this impactful third edition to the series following a 2014 Springer book on Technologies for Inclusive Well-Being and a 2017 Springer book Recent Advances in Technologies for Inclusive Well-Being. Digital technologies are pervasive in life and the contributions herein focus on specific attributes and situations, especially in training and treatment programmes spanning across ranges of diagnosis, conditions, ages, and targeted impacts. This volume purposefully does not cover all (even if that was possible) aspects on how virtual interactive space can align to statial computing, which in turn can align with related embodied entities (whatever the terms used e.g. Virtual, Augmented, Extended, Mixed Realities) along with AI, Deep Learning etc. It also doesn't cover what some may refer to as 'trendy terms' such as 360 degree, video, WebXR, cryptocurrency, blockchain, virtual goods, AR museums, travel and teleportation...however, what is covered in this book, and the prior volumes it builds upon (as above), is a sharing and questioning of advancing technologies for inclusive well-being through research and practices from an avant-garde perspective.
The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery. Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation. The book brings together the current state-of-the-art in the various multi-disciplinary solutions for Medical Image Processing and Computational Vision, including research, techniques, applications and new trends contributing to the development of the related areas.
Introduces both optical microscopy and medical imaging with an emphasis on recurring themes such as resolution and contrast to reinforce understanding. Includes many illustrations and boxed material that give more detailed explanations. Features hands-on activities and experiments. Provides end-of-chapter problems for self-study. Offers supplementary online materials including a solutions manual.
Sensors were developed to detect and quantify structures and functions of human body as well as to gather information from the environment in order to optimize the efficiency, cost-effectiveness and quality of healthcare services as well as to improve health and quality of life. This book offers an up-to-date overview of the concepts, modeling, technical and technological details and practical applications of different types of sensors. It also discusses the trends for the next generation of sensors and systems for healthcare settings. It is aimed at researchers and graduate students in the field of healthcare technologies, as well as academics and industry professionals involved in developing sensing systems for human body structures and functions, and for monitoring activities and health.
Articulates a series of scientific and technological developments described in a didactic way Shows a broad view of biometrics in several contexts: Current cases of study in five different areas Provides experimental results in different environments (availability of data and computer code to reproduce the experiments) Includes transdisciplinary approaches and discussions for each chapter Innovation as part of the final cases of study: developments are already affecting the new businesses of the digital age and the era of the brain
This thesis describes the use of biophysical and biochemical methods to prove that calcium has a positive feedback effect on amplifying and sustaining CD3 phosphorylation and should enhance T-cell sensitivity to foreign antigens. The study presented shows that calcium can regulate the signal pathway in cells not only as a secondary messenger but also through direct interactions with the phospholipid bilayer. The approach used in the thesis also represents an important advance, as it couples the use of nuclear magnetic resonance (NMR) to the analysis of signaling phenomena in living cells. Moreover, the thesis optimizes the Nanodisc assembly protocol, which can broaden its range of applications in membrane protein studies. A preliminary study on the structure of dengue virus NS2B-NS3p in complex with aprotinin, which may help to develop new drugs against the dengue virus, is also included.
Nanodiamonds: Applications in Biology and Nanoscale Medicine highlights the translation of nanodiamonds toward clinical relevance and medical applications. Integrating a spectrum of internationally-recognized experts currently developing these technologies, this book fits as a cornerstone of this exciting field. These include contributions from clinician scientists working at the interface of medicine and nanotechnologies which discuss the critical and requisite properties of nanomaterials, in a concise and cohesive manner. Nanodiamonds: Applications in Biology and Nanoscale Medicine provides a multidisciplinary overview of nanodiamonds and there uses for scientific, engineering and clinical audiences alike.
By definition Biomechanics is the application of engineering methods to study the mechanical aspects of living beings. Mostly the life scientists have the questions but lack of the specialized methods. The engineers on the other hand can handle very specialized equipment and methods, but lack in the biological thinking. If both sides are able to adapt to each other, Biomechanics is a classical field of interdis ciplinary cooperation. In the beginning, most biomechanical research was done in the field of orthopaedics. But other areas like cardiovascular research, dentistry, sports and many others gain increasing importance. This situation is clearly reflected in this book, which contains a selected number of papers which were presented at the Fifth Meeting of the European Society of Biomechanics, held in September 1986 in Berlin. Meanwhile these meetings have become a well accepted forum and a place of interdis ciplinary discussion for scientists in Biomechanics on the one side and surgeons and other peoples interested in biome chanical solutions on the other. It is the third time that the proceedings are published as a book and the editors are sure that this volume will help to establish this series "Developement in Biomechanics" as a valuable tool for all people involved in Biomechanics. The Fifth Meeting of the ESB also marks the tenth anniversary in the short history of the European Society of Biomechanics."
This book clarifies the meaning of the most important and pervasive concepts and tools in bioethical argumentation (principles, values, dignity, rights, duties, deliberation, prudence) and assesses the methodological suitability of the main methods for clinical decision-making and argumentation. The first part of the book is devoted to the most developed or promising approaches regarding bioethical argumentation, namely those based on principles, values and human rights. The authors then continue to deal with the contributions and shortcomings of these approaches and suggest further developments by means of substantive and procedural elements and concepts from practical philosophy, normative systems theory, theory of action, human rights and legal argumentation. Furthermore, new models of biomedical and health care decision-making, which overcome the aforementioned criticism and stress the relevance of the argumentative responsibility, are included.
Covers recent developments in materials like graphene reinforced magnesium metal matrix, magnesium, and its alloys. Discusses design and Analysis of Stainless Steel 316L for Femur Bone fracture healing. Covers advanced materials, their properties, and processing techniques. Provides advanced integrated design and nonlinear simulation problems occurring in the biomechanical engineering field.
Ubiquitous and fundamental in cell mechanics, multiscale problems can arise in the growth of tumors, embryogenesis, tissue engineering, and more. Cell Mechanics From Single Scale-Based Models to Multiscale Modeling brings together new insight and research on mechanical, mathematical, physical, and biological approaches for simulating the behavior of cells, specifically tumor cells. In the first part of the text, the book discusses the powerful tool of microrheology for investigating cell mechanical properties, multiphysics and multiscale approaches for studying intracellular mechanisms in cell motility, and the role of subcellular effects involving certain genes for inducing cell motility in cancer. Focusing on models based on physical, mathematical, and computational approaches, the second section develops tools for describing the complex interplay of cell adhesion molecules and the dynamic evolution of the cell cytoskeleton. The third part explores cell interactions with the environment, particularly the role of external mechanical forces and their effects on cell behavior. The final part presents innovative models of multicellular systems for developmental biology, cancer, and embryogenesis. This book collects novel methods to apply to cells and tissues through a multiscale approach. It presents numerous existing tools while stimulating the discovery of new approaches that can lead to more effective and accurate predictions of pathologies.
Emerging microbial and viral infections are a serious challenge to health, safety, and economics around the world. Antimicrobial and antiviral technologies are needed to disrupt the progression and replication of bacteria and viruses and to counter their rapidly evolving resistance. This book discusses recent developments in materials science and engineering in combating infectious diseases and explores advances in antimicrobial and antiviral materials, including polymers, metals, and ceramics and their applications in the fight against pathogens. Features * Covers progress in biomimetic antimicrobial and antiviral materials and antimicrobial/antiviral bulk materials and coatings * Describes modern methods for disinfection of biomedical materials against microbial and viral infection resistance, especially for depressing novel coronavirus (COVID-19) * Details methods to improve material properties to have a longer service life in combating infection * Emphasizes chemical, physical, mechanical, tribological, and antimicrobial/antiviral properties * Offers current and future applications of emerging antimicrobial/antiviral technologies This book will be of interest to materials researchers and industry professionals focusing on antimicrobial and antiviral applications.
The most up to date book on the topic Suitable for use as a textbook Contains a systematic description of each technique it describes Covers a broad readership, including nanotechnology, biotechnology, biophysics, analytical chemistry, and chemical biology Provides a highly simplified tutorial protocol at the end of each chapter to help readers obtain hands-on experience
This book focuses on cartilage defects and new mesenchymal stem cell-based treatments for their repair and regeneration. Early chapters provide a review of current etiological findings and repair methods of cartilage defects. The next chapters discuss fundamental concepts and features of MSCs, including their proliferation, differentiation, migration and immunomodulatory effects. The discussion also includes clinical applications of MSCs in cartilage tissues, especially with regards to various animal models, biomaterials and transferring techniques. Cartilage Regeneration focuses on the biology of MSCs and their possible applications in cartilage reconstruction, with the goal of bringing new insights into regenerative medicine. It will be essential reading for researchers and clinicians in stem cells, regenerative medicine, biomedical engineering and orthopedic surgery.
This book is an introduction to techniques and applications of optical methods for materials Characterization in civil and environmental engineering. Emphasizing chemical sensing and diagnostics, it is written for students and researchers studying the physical and chemical processes in manmade or natural materials. Optical Phenomenology and Applications - Health Monitoring for Infrastructure Materials and the Environment, describes the utility of optical-sensing technologies in applications that include monitoring of transport processes and reaction chemistries in materials of the infrastructure and the subsurface environment. Many of the applications reviewed will address long standing issues in infrastructure health monitoring such as the alkali silica reaction, the role of pH in materials degradation, and the remote and inset characterization of the subsurface environment. The remarkable growth in photonics has contributed immensely to transforming bench-top optical instruments to compact field deployable systems. This has also contributed to optical sensors for environmental sensing and infrastructure health monitoring. Application of optical waveguides and full field imaging for civil and environmental engineering application is introduced and chemical and physical recognition strategies are presented; this is followed by range of filed deployable applications. Emphasizing system robustness, and long-term durability, examples covered include in-situ monitoring of transport phenomena, imaging degradation chemistries, and remote sensing of the subsurface ground water.
Considering the importance of wireless networks in healthcare, this book is dedicated to studying the innovations and advancements of wireless networks for biomedical application and their impact. This book focuses on a wide range of wireless technologies related to healthcare and biomedical applications which include, among others, body sensor networks, mobile networks, internet of things, mobile cloud computing, pervasive computing and wearable computing. First the authors explain how biomedical applications using wireless technologies are built across networks. The authors also detail 5G spectrum splicing for medical applicatons. They then discuss how wearable computing can be used as activity recognition tools for biomedical applications through remote health monitoring and and remote health risk assessment. Finally the authors provide detailed discussions on security and privacy in wirelessly transmitted medical senor data. This book targets research-oriented and professional readers. It would fit as a recommended supplemental reading for graduate students. It also helps researchers enter the field of wireless biomedical applications.
Computational Cardiovascular Mechanics provides a cohesive guide to creating mathematical models for the mechanics of diseased hearts to simulate the effects of current treatments for heart failure. Clearly organized in a two part structure, this volume discusses various areas of computational modeling of cardiovascular mechanics (finite element modeling of ventricular mechanics, fluid dynamics) in addition to a description an analysis of the current applications used (solid FE modeling, CFD). Edited by experts in the field, researchers involved with biomedical and mechanical engineering will find Computational Cardiovascular Mechanics a valuable reference.
A comprehensive guide to the science of a transformational ultrananocrystalline-diamond (UNCDTM) thin film technology enabling a new generation of high-tech and external and implantable medical devices. Edited and co-authored by a co-originator and pioneer in the field, it describes the synthesis and material properties of UNCDTM coatings and multifunctional oxide/nitride thin films and nanoparticles, and how these technologies can be integrated into the development of implantable and external medical devices and treatments of human biological conditions. Bringing together contributions from experts around the world, it covers a range of clinical applications, including ocular implants, glaucoma treatment devices, implantable prostheses, scaffolds for stem cell growth and differentiation, Li-ion batteries for defibrillators and pacemakers, and drug delivery and sensor devices. Technology transfer and regulatory issues are also covered. This is essential reading for researchers, engineers and practitioners in the field of high-tech and medical device technologies across materials science and biomedical engineering.
This progressive reference redefines qualitative research as a crucial component of evidence-based practice and assesses its current and future impact on healthcare. Its introductory section explains the value of sociocultural context in case conceptualization, and ways this evidence can be integrated with quantitative findings to inform and transform practice. The bulk of the book's chapters review qualitative research in diverse areas, including pain, trauma, heart disease, COPD, and disabling conditions, and examine ways of effectively evaluating and applying qualitative data. This seismic shift in perception moves the healing professions away from traditional one-size-fits-all thinking and toward responsive, patient-centered care. Among the topics in the Handbook: *Examining qualitative alternatives to categorical representation. *The World Health Organization model of health: what evidence is needed? *Qualitative research in mental health and mental illness. *Qualitative evidence in pediatrics. *The contribution of qualitative research to medication adherence. *Qualitative evidence in health policy analysis. The Handbook of Qualitative Health Research for Evidence-Based Practice offers health and clinical psychologists, rehabilitation specialists, occupational and physical therapists, nurses, family physicians and other primary care providers new ways for understanding patients' health-related experiences and opens up new ways for developing interventions intended to improve health outcomes.
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C." |
You may like...
Advancements in Bio-Medical Image…
Rijwan Khan, Indrajeet Kumar
Hardcover
R8,408
Discovery Miles 84 080
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
AI-Enabled Smart Healthcare Using…
Rahul Kumar Chaurasiya, Dheeraj Agrawal, …
Hardcover
R11,201
Discovery Miles 112 010
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,308
Discovery Miles 33 080
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
|