![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
The potential of stem cells for healing and disease prevention in all fields of medicine is tremendous and has revolutionized the high-tech biomedical research. In this book, many of the most prominent researchers discuss the challenging topics of stem cell engineering, for example: Ethical issues of stem cell research; technological challenges, stem cell growth and differentiation, therapeutic applications, bioreactors and bioprocesses, high throughput and microfluidic screening platforms, stem cell identification and sorting, intercellular signaling and engineered niches, novel approaches for embryonic and adult stem cell growth and differentiation, stem cells and drug discovery, screening platforms. Stem Cell Engineering offers valuable background and reference for both the public and professionals including industrial staffers, faculty, researchers, engineers, students and scientific journalists.
This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics. This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.
The aim of volume 7 of Human Cell Culture is to provide clear and precise methods for growing primary cultures of adult stem cells from various human tissues and describe culture conditions in which these adult stem cells differentiate along their respective lineages. The book will be of value to biomedical scientists and of special interest to stem cell biologists and tissue engineers. Each chapter is written by experts actively involved in growing human adult stem cells.
This book covers emerging trends in signal processing research and biomedical engineering, exploring the ways in which signal processing plays a vital role in applications ranging from medical electronics to data mining of electronic medical records. Topics covered include statistical modeling of electroencephalograph data for predicting or detecting seizure, stroke, or Parkinson's; machine learning methods and their application to biomedical problems, which is often poorly understood, even within the scientific community; signal analysis; medical imaging; and machine learning, data mining, and classification. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers interested in applications of signal processing, medicine, and biology.
This book concentrates on the design and development of integrated optic waveguide sensors using silicon based materials. The implementation of such system as a tool for detecting adulteration in petroleum based products as well as its use for detection of glucose level in diabetes are highlighted. The first chapters are dedicated to the development of the theoretical model while the final chapters are focused on the different applications of such sensors. It gives the readers the full background in the field of sensors, reasons for using silicon oxynitride as a potential waveguide material as well as its fabrication processes and possible uses.
Designing Inclusive Interactions contains the proceedings of the fifth Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT), incorporating the 8th Cambridge Workshop on Rehabilitation Robotics, held in Cambridge, England, in March 2010. It contains contributions from an international group of leading researchers in the fields of Universal Access and Assistive Technology. This conference will mainly focus on the following principal topics: 1. Designing assistive and rehabilitation technology for working and daily living environments 2. Measuring inclusion for the design of products for work and daily living 3. Inclusive interaction design and new technologies for inclusive design 4. Assembling new user data for inclusive design 5. The design of accessible and inclusive contexts: work and daily living environments 6. Business advantages and applications of inclusive design 7. Legislation, standards and government awareness of inclusive design
Computational Intelligence is comparatively a new field but it has made a tremendous progress in virtually every discipline right from engineering, science, business, m- agement, aviation to healthcare. Computational intelligence already has a solid track-record of applications to healthcare, of which this book is a continuation. We would like to refer the reader to the excellent previous volumes in this series on computational intelligence in heal- care [1-3]. This book is aimed at providing the most recent advances and state of the art in the practical applications of computational intelligence paradigms in healthcare. It - cludes nineteen chapters on using various computational intelligence methods in healthcare such as intelligent agents and case-based reasoning. A number of fielded applications and case studies are presented. Highlighted are in particular novel c- putational approaches to the semantic management of health information such as in the Web 2.0, mobile agents such as in portable devices, learning agents capable of adapting to diverse clinical settings through case-based reasoning, and statistical - proaches in computational intelligence. This book is targeted towards scientists, application engineers, professors, health professionals, professors, and students. Background information on computational intelligence has been provided whenever necessary to facilitate the comprehension of a broad audience including healthcare practitioners.
Neural activity in the human brain generates coherent synaptic and intracellular currents in cortical columns that create electromagnetic signals which can be measured outside the head using magnetoencephalography (MEG) and electroencephalography (EEG). Electromagnetic brain imaging refers to techniques that reconstruct neural activity from MEG and EEG signals. Electromagnetic brain imaging is unique among functional imaging techniques for its ability to provide spatio-temporal brain activation profiles that reflect not only where the activity occurs in the brain but also when this activity occurs in relation to external and internal cognitive events, as well as to activity in other brain regions. Adaptive spatial filters are powerful algorithms for electromagnetic brain imaging that enable high-fidelity reconstruction of neuronal activity. This book describes the technical advances of adaptive spatial filters for electromagnetic brain imaging by integrating and synthesizing available information and describes various factors that affect its performance. The intended audience include graduate students and researchers interested in the methodological aspects of electromagnetic brain imaging.
In this book, leading authors in the field discuss developments of Ambient Assisted Living. The contributions have been chosen and invited at the 8th AAL Congress, Frankfurt/M. The meeting presents new technological developments which support the autonomy and independence of individuals with special needs. The 8th AAL Congress focusses its attention on technical assistance systems and their applications in homecare, health and care.
This book gathers together contributions from internationally renowned authors in the field of cardiovascular systems and provides crucial insight into the importance of sex- and gender-concepts during the analysis of patient data. This innovative title is the first to offer the elements necessary to consider sex-related properties in both clinical and basic studies regarding the heart and circulation on multiscale levels (i.e. molecular, cellular, electrophysiologically, neuroendocrine, immunoregulatory, organ, allometric, and modeling). Observed differences at (ultra)cellular and organ level are quantified, with focus on clinical relevance and implications for diagnosis and patient management. Since the cardiovascular system is of vital importance for all tissues, Sex-Specific Analysis of Cardiovascular Function is an essential source of information for clinicians, biologists, and biomedical investigators. The wide spectrum of differences described in this book will also act as an eye-opener and serve as a handbook for students, teachers, scientists and practitioners.
The generation of tridimensional tissues, assembled from scaffolding materials populated with biologically functional cells, is the great challenge and hope of tissue bioengineering and regenerative medicine. The generation of biomaterials capable of harnessing the immune system has been particularly successful. This book provides a comprehensive view of how immune cells can be manipulated to suppresses inflammation, deliver vaccines, fight cancer cells, promote tissue regeneration or inhibit blood clotting and bacterial infections by functionally engineered biomaterials. However, long-lived polymers, such as those employed in orthopedic surgery or vascular stents, can often induce an immune reaction to their basic components. As a result, this book is also an important step towards coming to understand how to manipulate biomaterials to optimize their beneficial effects and downplay detrimental immune responses.
This book shows the various sandwich assays that are constructed from recognition molecules, such as antibodies, oligonucleotide sequences and aptamers, developed as a result of nano- and biotechnology advances. It consists of ten chapters presenting interesting examples of these assays, organized according to the type of analytic methods (colorimetric, fluorescence, electrochemical, etc.) and detected objects (protein, nucleic acid, small-molecule, ion, etc.). It also includes a chapter discussing the introduction of sandwich assays as biosensors for the detection of a range of targets. It is an interesting and useful resource for a wide readership in various fields of chemical science and nanotechnology.
The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.
This thesis describes the challenging task of developing high critical temperature superconducting quantum interference devices (high-Tc SQUIDs) and using them as sensors for biomedical applications, including magnetic immunoassays, magnetoencephalography and magnetic resonance imaging (MRI). The first part of this work discusses the development of fast magnetic immunoassays, which can be used to improve the sensitivity, or to create new, unique point-of-care diagnostics systems. The second part shows that high-Tc SQUIDs might make magnetoencephalography more available, thus opening the field of high-Tc SQUID-based magnetoencephalography for recording brain functions. This technique can be combined with ultra-low field MRI which is discussed in the last part. This combination may provide a new unique tool for studies of brain functions. This work does not simply improve on existing technology but opens possibilities for novel advanced medical devices and techniques.
This book provides a comprehensive overview of the potential use of graphene-based materials in two important societal areas: medicine and the environment. It discusses how new graphene-based materials can be creatively used for biological purposes, for example as delivery vehicles for diagnostics or therapeutics, ultrasensitive sensors, smart responsive substrates for artificial-tissue design and biomarkers. Moreover, it presents new insights into their use as sorbent or photocatalytic materials for environmental decontamination in water and gas-phase desalination membranes and as sensors for contaminant monitoring, giving relevance to the current discussions on the possible toxicological effects of graphene-based materials.
The authors of this book analyze the influence of specific everyday life situations and contexts on the emotional state of people and the ways in which this can impact measurements of user experience. The book anticipates a future in which products and machines know how we feel and adapt to the feelings they sense (music systems that effectively enhance our current mood with a personalized choice of music, computer dialogues that avoid upcoming frustration, and photo cameras that take pictures whenever we're excited). In all these situations, knowledge of the emotional state of the user is prime information. A previous book published in the Philips Research Book Series, "Probing Experience," illustrated ways to evaluate the user experience through behavioural and physiological parameters. The present book focuses on the influence of context in these measurements. The everyday-life contexts of future products and machines will be always specific, especially in comparison to the standard laboratory situation. Context can impact the experience measurements and influence the occurrence and characteristics of certain signals. On the other hand, independent knowledge of the context could be very valuable for the interpretation of experience measurements. This book provides an overview of the present knowledge on the impact of context, and advocates the need for a joint understanding of its role in the measurement of experience. The authors comprise many experienced researchers on this topic with a wide variety of backgrounds, including business and academia, covering a broad range of context situations.
This book introduces approaches that have the potential to transform the daily practice of psychiatrists and psychologists. This includes the asynchronous communication between mental health care providers and clients as well as the automation of assessment and therapy. Speech and language are particularly interesting from the viewpoint of psychological assessment. For instance, depression may change the characteristics of voice in individuals and these changes can be detected by a special form of speech analysis. Computational screening methods that utilize speech and language can detect subtle changes and alert clinicians as well as individuals and caregivers. The use of online technologies in mental health, however, poses ethical problems that will occupy concerned individuals, governments and the wider public for some time. Assuming that these ethical problems can be solved, it should be possible to diagnose and treat mental health disorders online (excluding the use of medication). Speech and language are particularly interesting from the viewpoint of psychological assessment. For instance, depression may change the characteristics of voice in individuals and these changes can be detected by a special form of speech analysis. Computational screening methods that utilize speech and language can detect subtle changes and alert clinicians as well as individuals and caregivers. The use of online technologies in mental health, however, poses ethical problems that will occupy concerned individuals, governments and the wider public for some time. Assuming that these ethical problems can be solved, it should be possible to diagnose and treat mental health disorders online (excluding the use of medication).
This book highlights electromagnetic actuation (EMA) and sensing systems for a broad range of applications including targeted drug delivery, drug-release-rate control, catheterization, intravitreal needleless injections, wireless magnetic capsule endoscopy, and micromanipulations. It also reviews the state-of-the-art magnetic actuation and sensing technologies with remotely controlled targets used in biomedicine.
As a new interdisciplinary research area, image-based geometric modeling and mesh generation integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
This volume describes and discusses recent advances in angiogenesis research. The chapters are organized to address all biological length scales of angiogenesis: molecular, cellular and tissue in both in vivo and in vitro settings. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. Angiogenesis experts from diverse fields including engineering, cell and developmental biology, chemistry and physics will be invited to contribute chapters which focus on the mechanical and chemical signals which affect and promote angiogenesis.
This book presents a comprehensive and unifying approach to analytical identification of material properties of biological materials. Focusing on depth-sensing indentation testing, pipette aspiration testing, and torsion of soft tissues, it discusses the following important aspects in detail: damping, adhesion, thickness effect, substrate effect, elastic inhomogeneity effect, and biphasic effect. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics as well as for biomedical engineers interested in contact problems and involved in inverse materials parameters prediction analysis.
Research on bacterial adhesion and its significance is a major field involving many different aspects of nature and human life, such as marine science, soil and plant ecology, most importantly, the biomedical field. The adhesion ofbacteria to the food industry, and human tissue surfaces and implanted biomaterial surfaces is an important step in the patho genesis of infection. Handbook 0/ Bacterial Adhesion: Principles, Methods, and Applications is an outgrowth of the editors' own quest for information on laboratory techniques for studying bacte rial adhesion to biomaterials, bone, and other tissues and, more importantly, a response to significant needs in the research community. This book is designed to be an experimental guide for biomedical scientists, biomaterials scientists, students, laboratory technicians, or anyone who plans to conduct bacterial adhesion studies. More specifically, it is intended for all those researchers facing the chal lenge of implant infections in such devices as orthopedic prostheses, cardiovascular devices or catheters, cerebrospinal fluid shunts or extradural catheters, thoracic or abdominal catheters, portosystemic shunts or bile stents, urological catheters or stents, plastic surgical implants, oral or maxillofacial implants, contraceptive implants, or even contact lenses. It also covers research methods for the study of bacterial adhesion to tis sues such as teeth, respiratory mucosa, intestinal mucosa, and the urinary tract. In short, it constitutes a handbook for biomechanical and bioengineering researchers and students at all levels."
Ion channels are membrane proteins that act as gated pathways for
the movement of ions across cell membranes. They play essential
roles in the physiology of all cells. In recent years, an
ever-increasing number of human and animal diseases have been found
to result from defects in ion channel function. Most of these
diseases arise from mutations in the genes encoding ion channel
proteins, and they are now referred to as the
channelopathies.
Pediatric Injury Biomechanics: Archive and Textbook consolidates and describes the current state of the art in pediatric injury biomechanics research in the automotive crash environment. Written by the most respected scientists in the field, the objective of this ground-breaking project is to provide a comprehensive archive and analysis of pediatric injury biomechanics research; to be the go-to reference for the epidemiology of motor vehicle related childhood injury data, pediatric anthropometry, pediatric biomechanical properties, tissue tolerance, and computational models. This book provides essential information needed by researchers working in the field of pediatric injury including those involved in rulemaking activities, injury criteria development, child dummy development, and child injury interventions development. In addition to the text, a companion archive will include valuable information and tools to assist in the identification of gaps in research and future research directions.This living document will be regularly updated with current research and advancements in pediatric injury biomechanics.
State of the Art in Neural Networks and Their Applications, Volume Two presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. The book provides over views and case studies of advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing, and suitable data analytics useful for clinical diagnosis and research applications. The application of neural network, artificial intelligence and machine learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume One: Neural Networks in Oncology Imaging covers lung cancer, prostate cancer, and bladder cancer. Volume Two: Neural Networks in Brain Disorders and Other Diseases covers autism spectrum disorder, Alzheimer's disease, attention deficit hyperactivity disorder, hypertension, and other diseases. Written by experienced engineers in the field, these two volumes will help engineers, computer scientists, researchers, and clinicians understand the technology and applications of artificial neural networks. |
You may like...
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Biomarkers in Cancer Detection and…
Ranbir Chander Sobti, Masatoshi Watanabe, …
Paperback
R3,268
Discovery Miles 32 680
Healthcare Data Analytics and Management
Nilanjan Dey, Amira Ashour, …
Paperback
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
|