![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.
This book presents the Proceedings of ICON-2019, an international meeting exclusively dedicated to nanostructured materials in medicinal applications. The conference emphasized the recent advances in multidisciplinary research on processing, morphology, structure and properties of nanostructured materials and their applications in various medicinal fields. The papers encompass basic studies and applications and address topics of novel issues, difficulties, and breakthroughs in the field of nanomedicine in cancer, tuberculosis, tissue engineering, regenerative medicine etc.
Exploring the synthesis, characterization, surface manipulation, electron transfer and biological activity of silver nanoparticles, this book examines the fundamentals of the properties and synthesis of these particles. With a renewed interest in silver nanoparticles, this book addresses the need to understand their potential in industrial, medical and other applications. It is divided into six chapters, each written by an expert and providing a comprehensive review of the topic while detailing recent advances made in each specific area. These topics include surface plasmon band, synthesis and characterization, Surface-enhanced Raman spectroscopy (SERS) and plasmon resonance mediated processes, photocatalysis, biomedical applications and biological activity. It also presents the current state of the art, challenges and future trends of catalysis, sensing and biomedical applications.'Silver Nanoparticle Applications' provides an invaluable reference work and introduction for chemists, biologists, physicists and biomedical researchers who are interested in exploring the uses and applications of silver nanoparticles. It is also intended for students, researchers and professionals interested in nanotechnology.
In recent years biocompatible polymers for injuries and wounds have seen advances and innovations that have outpaced the growing field's literature. In this book Dr. Jan W. Gooch, a National Research Council Research Associateship Award recipient, reveals how innovative polymer technology can be applied to the common combat and trauma wounds associated with damaged soft tissue and bleeding. The scope of his investigation spans four distinct devices for wounds, liquid and particulate barrier dressings for soft tissue wounds, sutureless tissue adhesives, antibacterial nanoemulsions, one-hand operated and automatic tourniquets for the battlefield.
Prospective Isolation and Characterization of Human Bone Marrow-Derived MSCs, by A. Harichandan, K. Sivasubramaniyan, H.-J. Buhring Urine as a Source of Stem Cells, by Christina Benda, Ting Zhou, Xianming Wang, Weihua Tian, Johannes Grillari, Hung-Fat Tse, Regina Grillari-Voglauer, Duanqing Pei, Miguel A. Esteban Expansion of Mesenchymal Stem/Stromal Cells under Xenogenic-Free Culture Conditions, by Sven Kinzebach, Karen Bieback Adipose-Derived Mesenchymal Stem Cells: Biology and Potential Applications, by Danielle Minteer, Kacey G Marra, J Peter Rubin Potential for Osteogenic and Chondrogenic Differentiation of MSC, by Antonina Lavrentieva, Tim Hatlapatka, Anne Neumann, Birgit Weyand, Cornelia Kasper Potential for Neural Differentiation of Mesenchymal Stem Cells, by Letizia Ferroni, Chiara Gardin, Ilaria Tocco, Roberta Epis, Alessandro Casadei, Vincenzo Vindigni, Giuseppe Mucci, Barbara Zavan Migratory Properties of Mesenchymal Stem Cells, by Thomas Dittmar, Frank Entschladen Dissecting Paracrine Effectors for Mesenchymal Stem Cells, by Stefania Bruno, Federica Collino, Ciro Tetta, Giovanni Camussi Proteomics Approaches in the Identification of Molecular Signatures of Mesenchymal Stem Cells, by Yin Xiao, Jiezhong Chen Does the Adult Stroma Contain Stem Cells?, by Richard Schafer
Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.
Together, the volumes in this series present all of the data needed at various length scales for a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to, and remove carbon dioxide from, the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanism. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems, together with the mathematical tools to describe their functioning in quantitative terms. The present volume focuses on macroscopic aspects of the cardiovascular and respiratory systems in normal conditions, i.e., anatomy and physiology, as well as the acquisition and processing of medical images and physiological signals. * Reviews the anatomy and physiology of blood circulation and the body's ventilation * Reviews biological data for a better understanding of macroscopic scale processes * Describes the signals and images that are used to explore system function and as input data for computations
Sleep medicine has been developing for more than 40 years. The current concepts in sleep technology are mainly centered on polysomnography (PSG) and issues related to sleep technicians. However, the editorsbelieve that the true value of technology is revealed only when benefits to humanity are manifest. To this end, they endeavor to create a new era in sleep technology, one that will improve the quality of people's sleep and daily lives. This edited book, Introduction to Modern Sleep Technology, provides a comprehensive reference volume to the latest advancements in the area of Sleep Technology. It offers an excellent range of insights and opinions from leading researchers and experts in multiple disciplines spanning academia, clinical practice and industry. Up-to-date insights into the current research topics in this field are featured in addition to the latest technological advances with reference to appropriate working examples. Thecurrentbookcombines the five dimensions of knowledge, i.e., sleep medicine, clinical psychology engineering, industrial design and technology management to ensure the content is applicable to people's daily lives. This edited book, Introduction to Modern Sleep Technology, provides a comprehensive reference volume to the latest advancements in the area of Sleep Technology. It offers an excellent range of insights and opinions from leading researchers and experts in multiple disciplines spanning academia, clinical practice and industry. Up-to-date insights into the current research topics in this field are featured in addition to the latest technological advances with reference to appropriate working examples. Thecurrentbookcombines the five dimensions of knowledge, i.e., sleep medicine, clinical psychology engineering, industrial design and technology management to ensure the content is applicable to people's daily lives. Thecurrentbookcombines the five dimensions of knowledge, i.e., sleep medicine, clinical psychology engineering, industrial design and technology management to ensure the content is applicable to people's daily lives.
This ground-breaking title begins with an introductory overview of the Lower Extremity Gait Systems (LEGS) project, identifying concerns and observations as context for the reader to consider topics and challenges detailed in later chapters. Next are chapters that explore relevant military and civilian needs, and an essential historical context of the capabilities and limitations of contemporary prosthetics. The section concludes with an overview of essential components used in passive and active lower limb prosthetics, including sockets, foot, ankle, and knee systems, as well as emerging bionic systems. A second section considers research and development in orthotics, synthetic and biological materials, volitional control, and wearable robotics (also known as exoskeletons). Finally, expert authors explore advanced science and emerging medical perspectives in research related to limb salvage, osseointegration, limb transplantation, and tissue engineering. Designed for medical practitioners, engineers, students, and researchers who use or develop prosthetic technology for civilian or military amputees, Full Stride: Advancing the State of the Art in Lower Extremity Gait Systems will be of great interest to trauma specialists, orthopedists, rehabilitation specialists, nursing staff and physical therapists, as well as researchers and scientists who specialize in fields that shape and inform advanced prosthetic device development such as materials sciences, engineering (electrical, mechanical, biomedical), robotics, and human physiology.
Providing the most comprehensive, up-to-date coverage of this exciting biomedical field, Handbook of Photomedicine gathers together a large team of international experts to give you a complete account of the application of light in healthcare and medical science. The book progresses logically from the history and fundamentals of photomedicine to diverse therapeutic applications of light, known collectively as phototherapies. It facilitates your understanding of human diseases caused by light, the rationale for photoprotection, and major applications of phototherapy in clinical practice. The handbook begins with a series of historical vignettes of pioneers from the last two centuries. It also presents the fundamentals of physics and biology as applied to photomedicine. It next examines conditions and diseases caused by light, including skin cancer, dermatoses, and immunosuppression. The remainder of the book focuses on the most important clinical therapeutic applications of different kinds of light that vary in both wavelength and intensity. The book discusses ultraviolet phototherapy for skin diseases and infections and presents the basic science of photodynamic therapy and its use in cancer therapy and other medical specialties. It then covers mechanistic studies and clinical applications of low-level laser (light) therapy as well as the use of high power or surgical laser therapy in specialties, such as dentistry and dermatology. The book concludes with a collection of miscellaneous types of phototherapy.
Nanorobots represent a nanoscale device where proteins such as DNA, carbon nanotubes could act as motors, mechanical joints, transmission elements, or sensors. When these different components were assembled together they can form nanorobots with multi-degree-of-freedom, able to apply forces and manipulate objects in the nanoscale world. Design, Modeling and Characterization of Bio-Nanorobotic Systems investigates the design, assembly, simulation, and prototyping of biological and artificial molecular structures with the goal of implementing their internal nanoscale movements within nanorobotic systems in an optimized manner.
This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts in the field. This book is an up-to-date overview of current progress in mycorrhiza and association with plant productivity and environmental sustainability. The result is a must hands-on guide, ideally suited for agri-biotechnology, soil biology, fungal biology including mycorrhiza and stress management, academia and researchers. The topic of this book is particularly relevant to researchers involved in mycorrhiza, especially to food security and environmental protection. Mycorrhizas are symbioses between fungi and the roots of higher plants. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition and the diversity of natural ecosystems are frequently dependent upon the pre sence and activity of mycorrhizas. The biotechnological application of mycorrhizas is expected to promote the production of food while maintaining ecologically and economically sustainable production systems.
One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine.This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. "Computational Biomechanics for Medicine: Deformation and Flow" collects the papers from the Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2011) dedicated to research in the field of medical image computing and computer assisted medical interventions. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, andmedical robotics."
This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible.
Drawing on such process thinkers as Whitehead, Deleuze and Stengers, Innovation and Biomedicine develops a powerful framework for the analysis of Biomedical Innovation. With its sustained focus on the Pre-Exposure Prophylactic pill (PrEP) for the prevention of HIV infection, the volume explores the ethical, medical and political elements entailed in the pill's testing through offshore randomized control trials (RCTs). To this end, the key concept of 'eventuation' is elaborated and deployed in the scrutiny of the 'gold standard' status of RCTs, the role of ethics in RCTs, and the enactment of the PrEP pill as a singular entity. Further, the authors engage with affective, topological and virtual dimensions to show how PrEP's eventuation also allows for new scientific and ethical questions to be crafted. Innovation and Biomedicine is a major contribution to science and technology studies, medical sociology, and the multi-disciplinary study of HIV.
Nanoneuroscience is the study of computationally relevant biomolecules found inside neurons. Because of recent technological advances at the nanometer scale, scientists have at their disposal increasingly better ways to study the brain and the biophysics of its molecules. This book describes how biomolecules contribute to the operations of synapses and perform other computationally relevant functions inside dendrites. These biomolecular operations considerably expand the brain-computer analogy - endowing each neuron with the processing power of a silicon-based multiprocessor. Amazingly, the brain contains hundreds of billions of neurons.
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided.
This collection of recent activities provides researchers and scientists with the latest trends in characterization and developments of biosystems and biomaterials. Well known experts present their research in materials for drug delivery, dental implants and filling materials, biocompatible membranes, bioactive surface coatings and bio-compatible and eco-sustainable building materials. In The book covers also topics like microorganisms, the human eye, the musculoskeletal system and human body parts.
This contributed volume presents computational models of diabetes that quantify the dynamic interrelationships among key physiological variables implicated in the underlying physiology under a variety of metabolic and behavioral conditions. These variables comprise for example blood glucose concentration and various hormones such as insulin, glucagon, epinephrine, norepinephrine as well as cortisol. The presented models provide a powerful diagnostic tool but may also enable treatment via long-term glucose regulation in diabetics through closed-look model-reference control using frequent insulin infusions, which are administered by implanted programmable micro-pumps. This research volume aims at presenting state-of-the-art research on this subject and demonstrating the potential applications of modeling to the diagnosis and treatment of diabetes. The target audience primarily comprises research and experts in the field but the book may also be beneficial for graduate students.
This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point.
This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.
Nanomaterials and Nanosystems for Biomedical Applications brings together under a single cover various aspects of functional bioengineered materials and nanostructured biomaterials including commonly used implants and sustained release nanodevices. The book includes expert reviews on the advances and current problems associated with the implants and nanodevices along with their applications in medicine, pharmaceutics, cancer therapy, gene transfer and drug delivery. The editor, M. R. Mozafari (PhD), has been working in the field of nanobiotechnology for the past 14 years and has produced more than 60 publications. The book also describes the key research parameters pertaining to major technologies employed in the field.
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis |
You may like...
Advances in Imaging and Electron Physics…
Peter W. Hawkes, Martin Hytch
Hardcover
R5,242
Discovery Miles 52 420
Machine Learning Techniques for Gait…
James Eric Mason, Issa Traore, …
Hardcover
Converter-Based Dynamics and Control of…
Antonello Monti, Federico Milano, …
Paperback
R2,953
Discovery Miles 29 530
Solar Hydrogen Production - Processes…
Francesco Calise, Massimo Dentice D'Accadia, …
Paperback
Wireless Power Transfer for E-Mobility…
Mauro Feliziani, Tommaso Campi, …
Paperback
R3,232
Discovery Miles 32 320
Smart Electrical and Mechanical Systems…
Rakesh Sehgal, Neeraj Gupta, …
Paperback
R3,241
Discovery Miles 32 410
Food Sustainability and the Media…
Marta Antonelli, Pierangelo Isernia
Paperback
R2,936
Discovery Miles 29 360
|