![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community.
Lipid Nanocarriers for Drug Targeting presents recent advances in the area of lipid nanocarriers. The book focuses on cationic lipid nanocarriers, solid lipid nanocarriers, liposomes, thermosensitive vesicles, and cubosomes, with applications in phototherapy, cosmetic and others. As the first book related to lipid nanocarriers and their direct implication in pharmaceutical nanotechnology, this important reference resource is ideal for biomaterials scientists and those working in the medical and pharmaceutical industries that want to learn more on how lipids can be used to create more effective drug delivery systems.
Nanostructured Biomaterials for Cranio-maxillofacial and Oral Applications examines the combined impact of materials science, biomedical and chemical engineering, and biology to provide enhanced biomaterials for applications in maxillo-facial rehabilitation and implantology. With a strong focus on a variety of material classes, it examines material processing and characterization techniques to decrease mechanical and biological failure in the human body. After an introduction to the field, the most commonly used materials for cranio-facial applications, including ceramics, polymers and glass ceramics are presented. The book then looks at nanostructured surfaces, functionally graded biomaterials and the manufacturing of nanostructured materials via 3-D printing. This book is a valuable resource for scientists, researchers and clinicians wishing to broaden their knowledge in this important and developing field.
Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers.
This book presents the applications of ion-exchange materials in the biomedical industries. It includes topics related to the application of ion exchange chromatography in determination, extraction and separation of various compounds such as amino acids, morphine, antibiotics, nucleotides, penicillin and many more. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists.
This comprehensive compendium provides an up-to-date scientific source of biomedical engineering principles of 'replacement parts and assist devices' for the bionic man. It covers biomechanics, biochemistry, rehabilitation, tissue engineering, and sports science, as well as applications in cardiovascular, visual, auditory, and neurological systems.The useful reference text benefits students, scientists, and laymen keen in understanding the fundamental underlying principles of biomedical devices and procedures, along with recent advances in transplant methodology, gene therapy, stem cell research, and sports science.This unique volume provides numerous test questions in selected chapters with answers in the Appendix. Numerous color figures provide additional emphasis and vivacity to the written content.
Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers.
White biotechnology, or industrial biotechnology as it is also known, refers to the use of living cells and/or their enzymes to create industrial products that are more easily degradable, require less energy, create less waste during production and sometimes perform better than products created using traditional chemical processes. Over the last decade considerable progress has been made in white biotechnology research, and further major scientific and technological breakthroughs are expected in the future. Fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity and pH), and may be associated with plants (epiphytic, endophytic and rhizospheric). The fungal strains are beneficial as well as harmful for human beings. The beneficial fungal strains may play important roles in the agricultural, industrial, and medical sectors. The fungal strains and their products (enzymes, bioactive compounds, and secondary metabolites) are very useful for industry (e.g., the discovery of penicillin from Penicillium chrysogenum). This discovery was a milestone in the development of white biotechnology as the industrial production of penicillin and antibiotics using fungi moved industrial biotechnology into the modern era, transforming it into a global industrial technology. Since then, white biotechnology has steadily developed and now plays a key role in several industrial sectors, providing both high value nutraceutical and pharmaceutical products. The fungal strains and bioactive compounds also play an important role in environmental cleaning. This volume covers the latest developments and research in white biotechnology with a focus on diversity and enzymes.
Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as 'optimal' trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other's dynamics.
Materials Science for Dentistry, Tenth Edition, is a standard resource for undergraduate and postgraduate courses in dentistry. It provides fundamental coverage of the materials on which dentistry depends, covering the structure and chemistry that govern the behavior and performance of materials. Particular classes of materials include gypsum, polymers, acrylic, cements, waxes, ceramics and metals. Other chapters review surfaces, corrosion, mixing, casting, cutting and bonding, and mechanical testing. This updated edition, which includes substantial chapters on chemistry, has been extensively revised with new material on temporary restoration resins, hydraulic silicate cements and the practical aspects of wetting surfaces. Mindfully written to provide explanations for behavior, formulation, clinical and laboratory instructions and procedures, there is no comparable resource for researchers, students, teachers and practitioners in the field of dentistry.
Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation presents a concise overview of the most promising nanomaterials functionalized with ligands for biomedical applications. The first section focuses on current strategies for identifying biological targets and screening of ligand to optimize anchoring to nanomaterials, providing the foundation for the remaining parts. Section Two covers specific applications of functionalized nanomaterials in therapy and diagnostics, highlighting current practice and addressing major challenges, in particular, case studies of successfully developed and marketed functionalized nanomaterials. The final section focuses on regulatory issues and clinical translation, providing a legal framework for their use in biomedicine. This book is an important reference source for worldwide drug and medical devices policymakers, biomaterials scientists and regulatory bodies.
This book provides an overview of the types, sources, and applications of stem cells in regenerating various ocular tissues, with a perspective on both potential applications of stem cells and possible challenges. The scope of the chapters include both preclinical and clinical applications, including stem cell-derived therapies based on endogenous tissue repair; stem cell transplantation and cell replacement therapy; gene therapy; and in vitro disease modelling. Additionally, the volume presents applications in both anterior and posterior ocular disease, with a particular focus on diseases of the ocular surface, cornea, limbus, and retina, including inherited retinal dystrophies as well as acquired diseases, such as age-related macular degeneration. Regenerative Medicine and Stem Cell Therapy for the Eye is an ideal book for advanced researchers in stem cell and ocular biology as well as clinical ophthalmologists, and will be of interest to readers with backgrounds in developmental biology and bioengineering. This book also Skillfully reviews cutting-edge advances in stem cell biology as applied to regenerative medicine and ocular disease Provides expert viewpoints on key hurdles and challenges to successful implementation of stem cell-derived therapies in the clinical domain Offers a multi-disciplinary, broad understanding of cell-based therapies for ocular diseases by incorporating perspectives from biomedical scientists, physicians, and engineers Examines the connection between cell therapy and gene editing, in particular relation to ocular disease
Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries.
ODE/PDE Alpha-Synuclein Models for Parkinson's Disease discusses a mechanism for the evolution of Parkinson's Disease (PD) based on the dynamics of the protein a-synuclein, a monomer that has been implicated in this disease. Specifically, a-synuclein morphs and aggregates into a polymer that can interfere with functioning neurons and lead to neurodegenerative pathology. This book first demonstrates computer-based implementation of a prototype ODE/PDE model for the dynamics of the a-synuclein monomer and polymer, and then details the methodology for the numerical integration of ODE/PDE systems which can be applied to computer-based analyses of alternative models based on the reader's interest. This book facilitates immediate computer use for research without the necessity to first learn the basic concepts of numerical analysis for ODE/PDEs and programming algorithms
Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol examines the combined issues of PEGylation and viable biomaterials as alternatives. With a strong focus on polymeric biomaterials, the book first reviews the major issues associated with PEGylation and its use in vivo. Chapters then focus on alternative polymer systems for drug delivery systems. Finally, nanoparticles and future perspectives are examined. This book is a valuable resource for scientists and researchers in biomaterials, pharmaceuticals and nanotechnology, and all those who wish to broaden their knowledge in this field.
Global Air Pollution in Aging: Reading Smoke Signals is a complete reference connecting environmental pollution research to the human aging process. Since 1800, lifespans have more than doubled as infections declined and medicine improved. But the 20th century introduced a new global scourge of air pollution from fossil fuels with the potential to damage arteries, hearts and lungs that has been related to chronic exposure of air pollution from fossil fuels. Risk areas of study include childhood obesity, brain damage associated with air pollution, increased risk for autism in children and dementia in older adults. In humans and animals, air pollution stimulates chronic inflammation in different organs, and genetic vulnerability to air pollution is being recognized, particularly for carriers of the Alzheimer risk gene ApoE4.
The book reports on advanced topics in interactive robotics research and practice; in particular, it addresses non-technical obstacles to the broadest uptake of these technologies. It focuses on new technologies that can physically and cognitively interact with humans, including neural interfaces, soft wearable robots, and sensor and actuator technologies; further, it discusses important regulatory challenges, including but not limited to business models, standardization, education and ethical-legal-socioeconomic issues. Gathering the outcomes of the 1st INBOTS Conference (INBOTS2018), held on October 16-20, 2018 in Pisa, Italy, the book addresses the needs of a broad audience of academics and professionals working in government and industry, as well as end users. In addition to providing readers with detailed information and a source of inspiration for new projects and collaborations, it discusses representative case studies highlighting practical challenges in the implementation of interactive robots in a number of fields, as well as solutions to improve communication between different stakeholders. By merging engineering, medical, ethical and political perspectives, the book offers a multidisciplinary, timely snapshot of interactive robotics.
This book reviews the latest biotechnological advances with pluripotent stem cells, exploring their application in tissue engineering and medicinal chemistry. Chapters from expert contributors cover topics such as the production of transgene-free induced pluripotent stem cells (iPSCs), expansion, controlled differentiation and programming of pluripotent stem cells, and their genetic instability. Particular attention is given to the application of the pluripotent stem cells for vascularision of engineered tissue and for drug screening. This book will appeal to researchers working in regenerative medicine and drug discovery, and to bioengineers and professionals interested in stem cell research.
This book exclusively focuses on the science and fundamentals of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the core science and fundamentals of both synthetic and natural polymer-based gels, and pays particular attention to applications in the various research fields of biomedicine and engineering. Key topics addressed include: polysaccharide-based gels and their fundamentals; stimuli-responsive polymer gels; polymer gels applied to enzyme and cell immobilization; chitosan-based gels for cancer therapy; natural polymeric and gelling agents; radiation dosimetry; polymeric gels as vehicles for enhanced drug delivery across the skin; transport in and through gel; and polymer gel nanocomposites and functional gels. The book's extensive and highly topical coverage will appeal to researchers working in a broad range of fields in industry and academia alike.
Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions.
PID Control with Intelligent Compensation for Exoskeleton Robots explains how to use neural PD and PID controls to reduce integration gain, and provides explicit conditions on how to select linear PID gains using proof of semi-global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint spaces, with PID controllers compensated by neural networks. This is a great resource on how to combine traditional PD/PID control techniques with intelligent control. Dr. Wen Yu presents several leading-edge methods for designing neural and fuzzy compensators with high-gain velocity observers for PD control using Lyapunov stability. Proportional-integral-derivative (PID) control is widely used in biomedical and industrial robot manipulators. An integrator in a PID controller reduces the bandwidth of the closed-loop system, leads to less-effective transient performance and may even destroy stability. Many robotic manipulators use proportional-derivative (PD) control with gravity and friction compensations, but improved gravity and friction models are needed. The introduction of intelligent control in these systems has dramatically changed the face of biomedical and industrial control engineering.
Aimed at students, researchers, nutritionists, and developers in food technology, this research text addresses the nascent field of metabiotics. Metabiotics are products based on components of cells, metabolites, and signaling molecules released by probiotic strains, engineered to optimize host-specific physiological functions in a way that traditional probiotics cannot. This book examines the history, processes, design, classifications, and functions of metabiotics. It includes an overview of the composition and function of the gut microbiota, and discusses development of target-specific metabiotics. Further coverage includes comparisons to traditional probiotics, as well as probiotic safety and side-effects. Metabiotics: Present State, Challenges and Perspectives provides a complete history and understanding of this new field, the next phase of the probiotic industry.
This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more. Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices. Introduces novel biomaterials to be used in next-generation biomedical devices. Discusses high-frequency transducers for biomedical applications.
This book highlights the current state of the art in single cell analysis, an area that involves many fields of science - from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors, actuators, micro- and nano-structured materials, mechanisms of interaction and signal transduction, polymers and biomaterials, sensor electronics and instrumentation, analytical microsystems, recognition systems and signal analysis and sensor networks as well as manufacturing technologies, environmental, food, energy and biomedical applications. The book gathers a selection of papers presented at the AISEM Regional Workshop on Sensors and Microsystems, held in Portici (Naples), Italy in February 2020. |
![]() ![]() You may like...
How To Identify Trees In South Africa
Braam van Wyk, Piet Van Wyk
Paperback
Designing Beauty: The Art of Cellular…
Andrew Adamatzky, Genaro J. Martinez
Hardcover
R2,067
Discovery Miles 20 670
|