![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
Active and Assisted Living (AAL) systems aim at improving the quality of life and supporting independent and healthy living of older or impaired people by using a distributed network of sensors and actuators to create a ubiquitous technological layer, able to interact transparently with the users, observing and interpreting their actions and intentions, learning their preferences and adjusting the parameters of the system to improve their quality of life and work. This book provides a comprehensive review of the technologies and applications for AAL. Topics covered include the current state of the art of smart environments and labs from an AAL point of view; ambient and wearable sensors for human health monitoring; computer vision for active and assisted living; data fusion for identifying lifestyle patterns; interoperable enhanced living environments; reasoning systems for AAL; person-environment interaction; data analytics for enabling connected health; human gait analysis for frailty detection; fall prevention and detection; supporting activities of daily living; outdoor mobility assistance; location and orientation technologies based on WiFi systems; health, wellbeing and engagement in life through AAL; tablet-based clinical decision support system for hospitalised older adults; smart, age-friendly cities and communities; privacy and ethical issues; and human-centred design. The book concludes with a case study on the design and implementation of a smart home technological platform for the delivery of AAL services. With a wide range of chapters from international contributors, this book is essential reading for researchers and students in academics and industry developing AAL technologies, healthcare practitioners, and engineers with an interest in the field.
Electromagnetic waves have long been used in medical settings for diagnostic purposes, such as for the detection of cancerous tissues, stroke events or cardiovascular risk, as the behaviour of the waves upon meeting their target gives pertinent information for diagnostic and imaging purposes. This edited book presents advances in the use of electromagnetic waves and antennas in healthcare settings, both as diagnostic tools (such as radar-based imaging, holographic microwave imaging, thermoacoustic imaging systems), and therapeutic interventions (such as microwave ablation therapies for cancer). Written by an international team of biomedical engineering researchers, it discusses all aspects related to the design and modelling of electromagnetic imaging techniques, electromagnetic devices, wireless implants, wearable systems and wireless sensor networks and in vitro and in vivo testing. Design issues for wearable antennas, wearable sensors, magnetic coils and coil array issues are explored and biomedical applications such as cancer detection, stoke event detection, GI diagnostics, and cardiovascular risk prediction are discussed. The book also explores scattering problems of electromagnetic waves between different tissues, and how these complex scattering problems can be resolved. This book will be of interest to researchers and engineers in the electromagnetic wave community, those in antenna research, biomedical engineering and related fields.
Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications.
Molecular Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume One, Discovery and Technologies discusses how molecular biomarkers are used to determine predisposition, facilitate detection, improve treatment and offer prevention guidelines for different cancer types. This first volume in the series focuses on techniques and approaches recently developed to assist in the decision of which biomarker to use for specific conditions. Topics covered include circulating tumor cells and circulating tumor DNA, exomes, tumor microenvironment, gene editing, artificial intelligence and robotics. In addition, the book discusses the development and applications of organoids and precision medicine. This book will be a valuable resource for cancer researchers, oncologists, graduate students and members of the biomedical field who are interested in the potential of biomarkers in cancer research.
Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing, Second Edition, provides a comprehensive review of emerging rapid prototyping technologies, such as bioprinting, for biomedical applications. Rapid prototyping, also known as additive manufacturing, solid freeform fabrication, or 3D printing, can be used to create complex structures and devices for medical applications from solid, powder or liquid precursors. Sections explore a variety of materials, look at applications, and consider the use of rapid prototyping technologies for constructing organs. With its distinguished editor and international team of renowned contributors, this book is a useful, technical resource for scientists and researchers in academia, biomaterials and tissue regeneration.
Nanostructured Biomaterials for Regenerative Medicine focuses on the definition of new trends for the design of biomaterials for biomedical applications. It includes the ex novo synthesis as well as technological strategies to manipulate them into appropriate two-dimensional (2D) and three-dimensional (3D) forms, in order to impart all the main physical, chemical, structural and biological properties requested to achieve desired clinical efficacy. This book aims at offering a concise overview of innovative platforms based on nanostructured biomaterials as a function of their chemical nature - established by a consolidated material classification i.e., polymer, ceramics and metals. For each class, emerging bioinspired systems with rapid expansion in the biomedical research area and fabricated via new enabling technologies will be proposed for the use in tissue repair/regeneration and nanomedicine. This book is an essential resource for researchers, academics and professionals interested in the potential of nanostructured biomaterials for regenerative medicine.
The Handbook of Natural Fibres, Second Edition, Volume One: Types, Properties and Factors Affecting Breeding and Cultivation covers every aspect of natural fibers, their breeding, cultivation, processing and applications. This volume features fundamental discussions of each fiber, covering different stages of breeding and cultivation. Natural fibrous resources, both lignocellulosic and protein ones, are renewable, biodegradable, and nontoxic, making them an important source of sustainable textile solutions. A broad range of natural fibers are covered in this book, including cotton, jute, kenaf, flax, hemp, sisal, ramie, curaua, pineapple, bamboo, coir, sheep wool, and more.
Robots have come a long way thanks to advances in sensing and computer vision technologies and can be found today in healthcare, medicine and industry. Researchers have been looking at providing them with senses such as the ability to see, smell, hear and perceive touch in order to mimic and interact with humans and their surrounding environments. Topics covered in this edited book include various types of sensors used in robotics, sensing schemes (e-skin, tactile skin, e-nose, neuromorphic vision and touch), sensing technologies and their applications including healthcare, prosthetics, robotics and wearables. This book will appeal to researchers, scientists, engineers, and graduate and advanced students working in robotics, sensor technologies and electronics, and their applications in robotics, haptics, prosthetics, wearable and interactive systems, cognitive engineering, neuro-engineering, computational neuroscience, medicine and healthcare technologies.
Clinical Engineering: A Handbook for Clinical and Biomedical Engineers, Second Edition, helps professionals and students in clinical engineering successfully deploy medical technologies. The book provides a broad reference to the core elements of the subject, drawing from a range of experienced authors. In addition to engineering skills, clinical engineers must be able to work with both patients and a range of professional staff, including technicians, clinicians and equipment manufacturers. This book will not only help users keep up-to-date on the fast-moving scientific and medical research in the field, but also help them develop laboratory, design, workshop and management skills. The updated edition features the latest fundamentals of medical technology integration, patient safety, risk assessment and assistive technology.
Principles of Heart Valve Engineering is the first comprehensive resource for heart valve engineering that covers a wide range of topics, including biology, epidemiology, imaging and cardiovascular medicine. It focuses on valves, therapies, and how to develop safer and more durable artificial valves. The book is suitable for an interdisciplinary audience, with contributions from bioengineers and cardiologists that includes coverage of valvular and potential future developments. This book provides an opportunity for bioengineers to study all topics relating to heart valve engineering in a single book as written by subject matter experts.
Biomedical Information Technology, Second Edition, contains practical, integrated clinical applications for disease detection, diagnosis, surgery, therapy and biomedical knowledge discovery, including the latest advances in the field, such as biomedical sensors, machine intelligence, artificial intelligence, deep learning in medical imaging, neural networks, natural language processing, large-scale histopathological image analysis, virtual, augmented and mixed reality, neural interfaces, and data analytics and behavioral informatics in modern medicine. The enormous growth in the field of biotechnology necessitates the utilization of information technology for the management, flow and organization of data. All biomedical professionals can benefit from a greater understanding of how data can be efficiently managed and utilized through data compression, modeling, processing, registration, visualization, communication and large-scale biological computing.
Innovations and Emerging Technologies in Wound Care is a pivotal book on the prevention and management of chronic and non-healing wounds. The book clearly presents the research and evidence that should be considered when planning care interventions to improve health related outcomes for patients. New and emerging technologies are discussed and identified, along with tactics on how they can be integrated into clinical practice. This book offers readers a bridge between biomedical engineering and medicine, with an emphasis on technological innovations. It includes contributions from engineers, scientists, clinicians and industry professionals. Users will find this resource to be a complete picture of the latest knowledge on the tolerance of human tissues to sustained mechanical and thermal loads that also provides a deeper understanding of the risk for onset and development of chronic wounds.
Natural Biopolymers in Drug Delivery and Tissue Engineering systematically examines a broad range of natural polymers and their applications in drug delivery and tissue engineering. The book thoroughly collates the most relevant and up-to-date research on natural biopolymers, covering a variety of key natural polymer types such as chitin, chitosan, alginate, guar gum and collagen. It is divided into two sections, covering drug delivery and tissue engineering applications. Each section focuses on natural biopolymers in the form of scaffolds, membranes, films, gels and nanoparticles, thus helping the reader select not only the most appropriate polymer type, but also the most relevant structure. This comprehensive resource is ideal for materials scientists, biomedical engineers, tissue engineers, pharmaceutical scientists and anyone interested in developing novel materials for biomedical applications.
Advances in telemedicine technologies have offered clinicians greater levels of real-time guidance and technical assistance for diagnoses, monitoring, operations or interventions from colleagues based in remote locations. The topic includes the use of videoconferencing, mentorship during surgical procedures, or machine-to-machine communication to process data from one location by programmes running in another. This edited book presents a variety of technologies with applications in telemedicine, originating from the fields of biomedical sensors, wireless sensor networking, computer-aided diagnosis methods, signal and image processing and analysis, automation and control, virtual and augmented reality, multivariate analysis, and data acquisition devices. The Internet of Medical Things (IoMT), surgical robots, telemonitoring, and teleoperation systems are also explored, as well as the associated security and privacy concerns in this field. Topics covered include critical factors in the development, implementation and evaluation of telemedicine; surgical tele-mentoring; technologies in medical information processing; recent advances of signal/image processing techniques in healthcare; a real-time ECG processing platform for telemedicine applications; data mining in telemedicine; social work and tele-mental health services for rural and remote communities; applying telemedicine to social work practice and education; advanced telemedicine systems for remote healthcare monitoring; the impact of tone-mapping operators and viewing devices on visual quality of experience of colour and grey-scale HDR images; modelling the relationships between changes in EEG features and subjective quality of HDR images; IoMT and healthcare delivery in chronic diseases; and transform domain robust watermarking method using Riesz wavelet transform for medical data security and privacy.
Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos. It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book.
Advanced Biosensors for Health Care Applications highlights the different types of prognostic and diagnostic biomarkers associated with cancer, diabetes, Alzheimer's disease, brain and retinal diseases, cardiovascular diseases, bacterial infections, as well as various types of electrochemical biosensor techniques used for early detection of the potential biomarkers of these diseases. Many advanced nanomaterials have attracted intense interests with their unique optical and electrical properties, high stability, and good biocompatibility. Based on these properties, advanced nanoparticles have been used as biomolecular carriers, signal producers, and signal amplifiers in biosensor design. Recent studies reported that there are several diagnostic methods available, but the major issue is the sensitivity and selectivity of these approaches. This book outlines the need of novel strategies for developing new systems to retrieve health information of patients in real time. It explores the potential of nano-multidisciplinary science in the design and development of smart sensing technology using micro-nanoelectrodes, novel sensing materials, integration with MEMS, miniaturized transduction systems, novel sensing strategy, that is, FET, CMOS, System-on-a-Chip (SoC), Diagnostic-on-a-Chip (DoC), and Lab-on-a-Chip (LOC), for diagnostics and personalized health-care monitoring. It is a useful handbook for specialists in biotechnology and biochemical engineering.
Materials for Biomedical Engineering: Absorbable Polymers provides a detailed and comprehensive review of recent progress in absorbable biopolymers and their impact on biomedical engineering. The book's main focus lies in their classification, processing, properties and performance, biocompatibility, and their applications in tissue engineering, drug delivery, bone repair and regenerative medicine. The most up-to-date methods used to obtain such polymers and how to improve their properties is discussed in detail. This book provides readers with a comprehensive and updated review of the latest research in the field of absorbable polymers for biomedical applications.
Our increased understanding of health and disease coupled with major technologic advances has resulted in rapid and significant changes in the practice of medicine. How we prepare physicians for clinical practice 20, 30, or 40 years from now is of paramount importance to medical educators, to the future professionals, and to society at large. Implementing Biomedical Innovations into Health, Education, and Practice delves into this important question, discussing the effects of precision medicine, bioinformatics, biologic and environmental forces, and societal shifts on the physician's approach to diagnosis and therapy. The author interviewed world-renowned physicians, medical educators, healthcare leaders, and research professionals-their insights and quotes are woven throughout the narrative. Professionally illustrated, this relevant resource is a must-have for all medical professionals who incorporate technology and biomedical innovations in their research and clinical practice. It encourages thoughtful analysis on adapting and developing the foundational knowledge, skills, and aptitudes of future physicians and other healthcare professionals, and it belongs in your library. "Having completed deanship at one of America's leading medical schools, Jim Woolliscroft produces an insightful, contemplative projection of the likely skill and behavioral needs of the physician workforce for the mid-21st century...The result is a playbook for physician training that responds effectively to the daunting challenges faced in the coming transformation of the role of physicians in protecting the health of our nation." James L. Madara, MD, CEO, American Medical Association "Dr. Woolliscroft's provocative new book will become must reading for all who are serious about educating the next generation of physicians and health care leaders. Leveraging his own experience as a consummate educator and interviews with numerous thought leaders, he identifies the uncertainties, challenges and disruptions to the practice of medicine in the decades ahead. The implications and imperatives for the coming generations of physicians are compelling and of critical importance for care givers, policy makers, and most pointedly educators in the U.S. and around the world." Gary S. Kaplan MD, Chairman and CEO, Virginia Mason Health System "This ambitious masterpiece, by one of the leading medical educators of our time, fully captures the ongoing changes and disruptions in medicine today, and how they will influence the care of patients and the training of young physicians in the future." Eric Topol, MD, Executive Vice President, Scripps Research, Author of Deep Medicine
Functional Polysaccharides for Biomedical Applications examines the fundamentals and properties of these natural materials and their potential biomedical applications. With an emphasis on therapeutic and sensing applications, the book also reviews how polysaccharides can be modified for tissue engineering applications. Sections discuss the basics of polysaccharides, give an overview of the potential applications, look at novel materials and technologies for use in tissue regeneration and therapeutics, and detail current biomedical applications. With a strong focus on materials, engineering and applications, this book is a valuable resource for those with an interest in harnessing the biomedical potential of natural polymers.
Biomaterials for Skin Repair and Regeneration examines a range of materials and technologies used for regenerating or repairing skin. With a strong focus on biomaterials and scaffolds, the book also examines the testing and evaluation pathway for human clinical trials. Beginning by introducing the fundamentals on skin tissue, the book goes on to describe contemporary technology used in skin repair as well as currently available biomaterials suitable for skin tissue repair and regeneration. Skin tissue engineering and the ideal requirements to take into account when developing skin biomaterials are discussed, followed by information on the individual materials used for skin repair and regeneration. As evaluation of biomaterials in animal models is mandatory before proceeding into human clinical trials, the book also examines the different animal models available. With a strong focus on materials, engineering, and application, this book is a valuable resource for materials scientists, skin biologists, and bioengineers with an interest in tissue engineering, regeneration, and repair of skin.
Medical Device Design: Innovation from Concept to Market, Second Edition provides the bridge between engineering design and medical device development. There is no single text that addresses the plethora of design issues a medical devices designer meets when developing new products or improving older ones; this book fills that need. It addresses medical devices' regulatory (FDA and EU) requirements, shows the essential methodologies medical designers must understand to ensure their products meet requirements, and brings together proven design protocols, thus enabling engineers and medical device manufacturers to rapidly bring new products to the marketplace. This book is unique because it takes the reader through the process of medical device development, from very early stages of conceptualization, to commercialization on the global market. This rare resource can be used by both professionals and newcomers to device design.
Advances in Biomechanics and Tissue Regeneration covers a wide range of recent development and advances in the fields of biomechanics and tissue regeneration. It includes computational simulation, soft tissues, microfluidics, the cardiovascular system, experimental methods in biomechanics, mechanobiology and tissue regeneration. The state-of-the-art, theories and application are presented, making this book ideal for anyone who is deciding which direction to take their future research in this field. In addition, it is ideal for everyone who is exploring new fields or currently working on an interdisciplinary project in tissue biomechanics.
Computational Modeling in Bioengineering and Bioinformatics promotes complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems, and in the environment, public health, drug design, and so on. It provides a common platform by bridging these two very important and complementary disciplines into an interactive and attractive forum. Chapters cover biomechanics and bioimaging, biomedical decision support system, data mining, personalized diagnoses, bio-signal processing, protein structure prediction, tissue and cell engineering, biomedical image processing, analysis and visualization, high performance computing and sports bioengineering. The book's chapters are the result of many international projects in the area of bioengineering and bioinformatics done at the Research and Development Center for Bioengineering BioIRC and by the Faculty of Engineering at the University of Kragujevac, Serbia.
Theranostic Bionanomaterials is an invaluable study of recent advances and trends in the development and application of functional bionanomaterials for theranostic applications. This book describes the design and characterization of nanomaterials which exhibit distinctive physical, chemical and biological properties and discusses how these functional nanomaterials enable the precise manipulation of architectural, physical and biochemical cell microenvironments in vitro. In addition, it covers how they can act as the carriers of diagnostic or therapeutic agents, thus providing new pathways or strategies for disease diagnosis and treatment. Specific chapters discuss protein delivery, drug delivery, tissue regeneration, bioimaging, biodetection, and much more. This book will be a critical resource for those involved in cutting-edge research in theranostics bionanomaterial.
Clinical Simulation: Education, Operations and Engineering, Second Edition, offers readers a restructured, comprehensive and updated approach to learn about simulation practices and techniques in a clinical setting. Featuring new and revised chapters from the industry's top researchers and educators, this release gives readers the most updated data through modern pedagogy. This new edition has been restructured to highlight five major components of simulation education, including simulation scenarios as tools, student learning, faculty teaching, necessary subject matter, and the learning environment. With clear and efficient organization throughout the book, users will find this to be an ideal text for students and professionals alike. |
You may like...
Cases on Educational Technology…
Albert D. Ritzhaupt, Swapna Kumar
Hardcover
R4,457
Discovery Miles 44 570
Computer-Graphic Facial Reconstruction
John G. Clement, Murray K. Marks
Hardcover
R2,327
Discovery Miles 23 270
Functional Gaussian Approximation for…
Florence Merlevede, Magda Peligrad, …
Hardcover
R3,197
Discovery Miles 31 970
Cellular Neural Networks - Analysis…
Martin Hanggi, George S. Moschytz
Hardcover
R2,735
Discovery Miles 27 350
Risk Savvy - How to Make Good Decisions
Gerd Gigerenzer
Paperback
(1)
DSP System Design - Complexity Reduced…
Artur Krukowski, Izzet Kale
Hardcover
R2,781
Discovery Miles 27 810
|