Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
This book focuses on the latest fluorescent materials for cell imaging. Cell imaging is a widely used basic technique that helps scientists gain a better understanding of biological functions through studies of cellular structure and dynamics. In the past decades, the development of a variety of new fluorescent materials has significantly extended the applications of cellular imaging techniques. This book presents recently developed fluorescent materials, including semiconductor quantum dots, carbon dots, silicon nanoparticles, metal nanoclusters, upconversion nanoparticles, conjugated polymers/polymer dots, aggregation-induced emission (AIE) probes, and coordination compounds, used for various cellular imaging purposes. It will appeal to cell biologists and other researchers in academia, industry and clinical settings who are interested in the technical development and advanced applications of fluorescence imaging in cells, tissues and organisms to explore the mechanisms of biological functions and diseases.
This book offers a comprehensive introduction to electron-based bioscience, biotechnology, and biocorrosion. It both explains the importance of electron flow during metabolic processes in microorganisms and provides valuable insights into emerging applications in various fields. In the opening section, readers will find up-to-date information on topics such as electron transfer reactions, extracellular electron transfer mechanisms, direct interspecies electron transfer, and electron uptake by sulfate-reducing bacteria. The focus then shifts to state-of-the-art advances and applications in the field of biotechnology. Here, the coverage encompasses e.g. progress in understanding electrochemical interactions between microorganisms and conductive particles, enzymatic reactions and their application in the bioproduction of useful chemicals, and the importance of redox balance for fatty acid production. In closing, the book addresses various aspects of the complex phenomenon of microbiologically induced corrosion, highlighting novel insights from the fields of electromicrobiology and electrochemistry and their implications.
Robotic animals are nowadays developed for various types of research, such as bio-inspired robotics, biomimetics and animal behavior studies. More specifically, in the case of collective animal behavior research, the robotic device can interact with animals by generating and exploiting signals relevant for social behavior. Once perceived by the animal society as conspecific, these robots can become powerful tools to study the animal behaviors, as they can at the same time monitor the changes in behavior and influence the collective choices of the animal society. In this book, we present novel robotized tools that can integrate shoals of fish in order to study their collective behaviors. We used the current state of the art on the zebrafish social behavior to define the specifications of the robots, and we performed stimuli analysis to improve their developments. Bio-inspired controllers were designed based on data extracted from experiments with zebrafish for the robots to mimic the zebrafish locomotion underwater. Experiments involving mixed groups of fish and robots qualified the robotic system to be integrated among a zebrafish shoal and to be able to influence the collective decisions of the fish. These results are very promising for the field of animal-robot interaction studies, as we showed the effect of the robots in long-duration experiments and repetitively, with the same order of response from the animals.
This informative book focuses on the nutritional value of potatoes and ways to improve it. With the world reeling under the burden of an ever-growing population, there is a pressing need for affordable and nutritious staples to feed the billions. Potatoes are grown in a broad range of countries around the world and can substantially contribute to future food security. Given the increasing consumption of potatoes, there is a need for a book that compiles information on and raises awareness of their nutritional value, while also encouraging their consumption. The respective chapters of this book cover the chemical composition, structure and health benefits of potatoes, as well as genetic modifications used to alter the concentration of relevant chemical compounds in them. The book provides an overview of potatoes as a nutrient-dense crop, and discusses important aspects such as the role of potatoes in human diet, how they can improve the overall health of individuals, their role in addressing malnutrition etc. Its chapters deal with topics such as carbohydrates and glycemic index, dietary fibers, vitamins, proteins, phenols, carotenoids, anthocyanins, minerals, lipids, glycoalkaloids, new health-promoting compounds, the composition and utilization of potato peel, nutritional significance of potato products, and potato probiotics. Given its scope, the book will be of interest to undergraduate students, graduate students and researchers in plant physiology and biochemistry, plant genetic engineering, the food sciences and agriculture, as well as industry partners in related fields.
Given the profound moral-ethical controversies regarding the use of new biotechnologies in medical research and treatment, such as embryonic research and cloning, this book sheds new light on the role of religious organizations and actors in influencing the bio-political debates and decision-making processes. Further, it analyzes the ways in which religious traditions and actors formulate their bio-ethical positions and which rationales they use to validate their positions. The book offers a range of case studies on fourteen Western democracies, highlighting the bio-ethical and political debates over human stem cell research, therapeutic and reproductive cloning, and pre-implantation genetic diagnosis. The contributing authors illustrate the ways in which national political landscapes and actors from diverse and often fragmented moral communities with widely varying moral stances, premises and commitments formulate their bio-ethical positions and seek to influence political decisions.
This book discusses the methods synthesizing various carbon materials, like graphite, carbon blacks, carbon fibers, carbon nanotubes, and graphene. It also details different functionalization and modification processes used to improve the properties of these materials and composites. From a geometrical-structural point of view, it examines different properties of the composites, such as mechanical, electrical, dielectric, thermal, rheological, morphological, spectroscopic, electronic, optical, and toxic, and describes the effects of carbon types and their geometrical structure on the properties and applications of composites.
This book focuses on the application of nanotechnology in medicine and drug delivery, including diagnosis and therapy. Nanomedicine can contribute to the development of a personalized medicine both for diagnosis and therapy. By interacting with biological molecules at nanoscale level, nanotechnology opens up an immense field of research and applications. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the extracellular medium and inside human cells. Operating at nanoscale allows exploitation of physical properties different from those observed at microscale, such as the volume to surface area ratio. A number of clinical applications of nanobiotechnology, such as disease diagnosis, target-specific drug delivery, and molecular imaging are being investigated. Some promising new products are also undergoing clinical trials. Such advanced applications of this approach to biological systems will undoubtedly transform the foundations of diagnosis, treatment, and prevention of disease in the future. Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested each year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013. As the nanomedicine industry continues to grow, it is expected to have a significant impact on the global economy. This book provides clear, colorful and simple illustrations, tables, and case studies to clearly convey the content to a general audience and reader. This book also discusses the development of nanobiomaterials from biogenic (biological sources) systems for healthcare and disease therapies. This book, therefore, is useful for researchers and academicians in the fields of nanotechnology, medicine, nano-biotechnology and pharmacology.
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors, actuators, micro- and nano-structured materials, mechanisms of interaction and signal transduction, polymers and biomaterials, sensor electronics and instrumentation, analytical microsystems, recognition systems and signal analysis and sensor networks as well as manufacturing technologies, environmental, food, energy and biomedical applications. The book gathers a selection of papers presented at the AISEM Regional Workshop on Sensors and Microsystems, held in Portici (Naples), Italy in February 2020.
This book presents the applications of ion-exchange materials in the biomedical industries. It includes topics related to the application of ion exchange chromatography in determination, extraction and separation of various compounds such as amino acids, morphine, antibiotics, nucleotides, penicillin and many more. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists.
This monograph sketches out a broad spectrum of problems (from evolution and metabolism to morphogenesis and biogeographical dynamics) whose solution has been impacted by mathematical models. Each of the selected examples has led to the recognition-and set direction to further study-of certain fundamental but unintuitive properties of biological systems, such as the making and breaking of specific symmetries that underlie morphogenesis. Whether they are long-established or only recently accepted, these models are selected for being thought-provoking and illuminating both the achievements and the gaps in our current understanding of the given area of biology. The selection of models is also meant to bring to the fore the existing degree of unity in the quantitative approach to diverse general-biological questions and in the systems-level properties that are discovered across the levels of biological organization. It is the thesis of this book that further cultivation of such unity is a way forward as we progress toward a general theory of living matter. This is an ideal book for students (in the broadest sense) of biology who wish to learn from this attempt to present the exemplary models, their methodological lessons, and the outline of a unified theory of living matter that is now beginning to emerge. In addition to a doctoral student preparing for quantitative biology research, this reader could also be an interdisciplinary scientist transitioning to biology. The latter-for example, a physicist or an engineer-may be comfortable with the mathematical apparatus and prepared to quickly enter the intended area of work, but desires a broader foundation in biology from the quantitative perspective.
White biotechnology, or industrial biotechnology as it is also known, refers to the use of living cells and/or their enzymes to create industrial products that are more easily degradable, require less energy, create less waste during production and sometimes perform better than products created using traditional chemical processes. Over the last decade considerable progress has been made in white biotechnology research, and further major scientific and technological breakthroughs are expected in the future. Fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity and pH), and may be associated with plants (epiphytic, endophytic and rhizospheric). The fungal strains are beneficial as well as harmful for human beings. The beneficial fungal strains may play important roles in the agricultural, industrial, and medical sectors. The fungal strains and their products (enzymes, bioactive compounds, and secondary metabolites) are very useful for industry (e.g., the discovery of penicillin from Penicillium chrysogenum). This discovery was a milestone in the development of white biotechnology as the industrial production of penicillin and antibiotics using fungi moved industrial biotechnology into the modern era, transforming it into a global industrial technology. Since then, white biotechnology has steadily developed and now plays a key role in several industrial sectors, providing both high value nutraceutical and pharmaceutical products. The fungal strains and bioactive compounds also play an important role in environmental cleaning. This volume covers the latest developments and research in white biotechnology with a focus on diversity and enzymes.
Today, there is an intense interest for bio natural language processing (NLP) creating a need among researchers, academicians, and practitioners for a comprehensive publication of articles in this area. ""Information Retrieval in Biomedicine: Natural Language Processing for Knowledge Integration"" provides relevant theoretical frameworks and the latest empirical research findings in this area according to a linguistic granularity. As a critical mass of advanced knowledge, this book presents original applications, going beyond existing publications while opening up the road for a broader use of NLP in biomedicine.
This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19.
This book provides an overview of the types, sources, and applications of stem cells in regenerating various ocular tissues, with a perspective on both potential applications of stem cells and possible challenges. The scope of the chapters include both preclinical and clinical applications, including stem cell-derived therapies based on endogenous tissue repair; stem cell transplantation and cell replacement therapy; gene therapy; and in vitro disease modelling. Additionally, the volume presents applications in both anterior and posterior ocular disease, with a particular focus on diseases of the ocular surface, cornea, limbus, and retina, including inherited retinal dystrophies as well as acquired diseases, such as age-related macular degeneration. Regenerative Medicine and Stem Cell Therapy for the Eye is an ideal book for advanced researchers in stem cell and ocular biology as well as clinical ophthalmologists, and will be of interest to readers with backgrounds in developmental biology and bioengineering. This book also Skillfully reviews cutting-edge advances in stem cell biology as applied to regenerative medicine and ocular disease Provides expert viewpoints on key hurdles and challenges to successful implementation of stem cell-derived therapies in the clinical domain Offers a multi-disciplinary, broad understanding of cell-based therapies for ocular diseases by incorporating perspectives from biomedical scientists, physicians, and engineers Examines the connection between cell therapy and gene editing, in particular relation to ocular disease
The book reports on advanced topics in interactive robotics research and practice; in particular, it addresses non-technical obstacles to the broadest uptake of these technologies. It focuses on new technologies that can physically and cognitively interact with humans, including neural interfaces, soft wearable robots, and sensor and actuator technologies; further, it discusses important regulatory challenges, including but not limited to business models, standardization, education and ethical-legal-socioeconomic issues. Gathering the outcomes of the 1st INBOTS Conference (INBOTS2018), held on October 16-20, 2018 in Pisa, Italy, the book addresses the needs of a broad audience of academics and professionals working in government and industry, as well as end users. In addition to providing readers with detailed information and a source of inspiration for new projects and collaborations, it discusses representative case studies highlighting practical challenges in the implementation of interactive robots in a number of fields, as well as solutions to improve communication between different stakeholders. By merging engineering, medical, ethical and political perspectives, the book offers a multidisciplinary, timely snapshot of interactive robotics.
Aimed at students, researchers, nutritionists, and developers in food technology, this research text addresses the nascent field of metabiotics. Metabiotics are products based on components of cells, metabolites, and signaling molecules released by probiotic strains, engineered to optimize host-specific physiological functions in a way that traditional probiotics cannot. This book examines the history, processes, design, classifications, and functions of metabiotics. It includes an overview of the composition and function of the gut microbiota, and discusses development of target-specific metabiotics. Further coverage includes comparisons to traditional probiotics, as well as probiotic safety and side-effects. Metabiotics: Present State, Challenges and Perspectives provides a complete history and understanding of this new field, the next phase of the probiotic industry.
This book addresses the fundamental challenges underlying bioelectronics and tissue interface for clinical investigation. Appropriate for biomedical engineers and researchers, the authors cover topics ranging from retinal implants to restore vision, implantable circuits for neural implants, and intravascular electrochemical impedance to detect unstable plaques. In addition to these chapters, the authors also document the approaches and issues of multi-scale physiological assessment and monitoring in both humans and animal models for health monitoring and biological investigations; novel biomaterials such as conductive and biodegradable polymers to be used in biomedical devices; and the optimization of wireless power transfer via inductive coupling for batteryless and wireless implantable medical devices. In addition to engineers and researchers, this book is also an ideal supplementary or reference book for a number of courses in biomedical engineering programs, such as bioinstrumentation, MEMS/BioMEMS, bioelectronics and sensors, and more. Analyzes and discusses the electrode-tissue interfaces for optimization of biomedical devices. Introduces novel biomaterials to be used in next-generation biomedical devices. Discusses high-frequency transducers for biomedical applications.
This book reviews the development, characterization and applications of aptamers in different areas of biotechnology ranging from therapeutics to diagnostics and protein purification. Hailed as chemical antibodies, these single-stranded nucleic acid receptors were predicted to supersede antibodies in traditional assays, such as ELISA, within a short time. While this has yet to happen, readers will find in this book a deep insight into the progress of aptamer technology and a critical discussion about the limitations that need to be overcome in order to find wider acceptance and use outside of the still relatively small aptamer-community. This book covers all aspects of aptamer generation and application for the aptamer-experienced reader and curious novice alike, with the addition of an industry perspective on the future of aptamer-use in biotechnology.
This book comprises a series of lectures given by celebrated Soviet neurophysiologist Nikolai Alexandrovich Bernstein in Moscow in 1925 and first published in Russian in 1926. Bernstein's groundbreaking work, which has had a significant influence on the development of neuroscience, movement studies, and other fields of study in Russia, Eastern Europe, and the West, was suppressed during Stalin's regime. At the time of its publication, Biomechanics for Instructors was a significant resource for teachers, with its descriptions of the movement of joints and degrees of freedom, illustrations of how to calculate the work capacity of muscles with bones acting as levers, the role of the central nervous system in movement, and more. Though the terminologies and methods have changed and been updated as research and technologies have progressed, the book remains a valuable introduction for those interested in Bernstein's work more generally, and to those involved in the study of biomechanics. This book is also of interest to historians and philosophers of neuroscience, as well as those involved in movement studies in both the scientific and artistic domains, and to physiotherapists and those involved in sports research and practice.
This book exclusively focuses on the science and fundamentals of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the core science and fundamentals of both synthetic and natural polymer-based gels, and pays particular attention to applications in the various research fields of biomedicine and engineering. Key topics addressed include: polysaccharide-based gels and their fundamentals; stimuli-responsive polymer gels; polymer gels applied to enzyme and cell immobilization; chitosan-based gels for cancer therapy; natural polymeric and gelling agents; radiation dosimetry; polymeric gels as vehicles for enhanced drug delivery across the skin; transport in and through gel; and polymer gel nanocomposites and functional gels. The book's extensive and highly topical coverage will appeal to researchers working in a broad range of fields in industry and academia alike.
This book reviews the latest biotechnological advances with pluripotent stem cells, exploring their application in tissue engineering and medicinal chemistry. Chapters from expert contributors cover topics such as the production of transgene-free induced pluripotent stem cells (iPSCs), expansion, controlled differentiation and programming of pluripotent stem cells, and their genetic instability. Particular attention is given to the application of the pluripotent stem cells for vascularision of engineered tissue and for drug screening. This book will appeal to researchers working in regenerative medicine and drug discovery, and to bioengineers and professionals interested in stem cell research.
This book highlights the current state of the art in single cell analysis, an area that involves many fields of science - from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.
This book provides a pioneering approach to modeling the human diabetic patient using a software agent. It is based on two MASc (Master of Applied Science) theses: one looking at the evolution of the patient agent in time, and another looking the interaction of the patient agent with the healthcare system. It shows that the software agent evolves in a manner analogous to the human patient and exhibits typical attributes of the illness such as reacting to food consumption, medications, and activity. This agent model can be used in a number of different ways, including as a prototype for a specific human patient with the purpose of helping to identify when that patient's condition deviates from normal variations. The software agent can also be used to study the interaction between the human patient and the health care system. This book is of interest to anyone involved in the management of diabetic patients or in societal research into the management of diabetes. The diabetic patient agent was developed using the Ackerman model for diabetes, but this model can be easily adapted for any other model subject with the necessary physiological data to support that model.
This book addresses a range of synthesis and characterization techniques that are critical for tailoring and broadening the various aspects of polymer gels, as well as the numerous advantages that polymer gel-based materials offer. It presents a comprehensive collection of chapters on the recent advances and developments in the science and fundamentals of both synthetic and natural polymer-based gels. Topics covered include: synthesis and structure of physically/chemically cross-linked polymer-gels/polymeric nanogels; gel formation through non-covalent cross-linking; molecular design and characterization; polysaccharide-based polymer gels: synthesis, characterization, and properties; modified polysaccharide gels: silica-based polymeric gels as platforms for the delivery of pharmaceuticals; gel-based approaches in genomic and proteomic sciences; emulgels in drug delivery; and organogels. The book provides a cutting-edge resource for researchers and scientists working in various fields involving polymers, biomaterials, bio-nanotechnology and functional materials.
This book discusses the emerging field of industrial neuroscience, and reports on the authors' cutting-edge findings in the evaluation of mental states, including mental workload, cognitive control and training of personnel involved either in the piloting of aircraft and helicopters, or in managing air traffic. It encompasses neuroimaging and cognitive psychology techniques and shows how they have been successfully applied in the evaluation of human performance and human-machine interactions, and to guarantee a proper level of safety in such operational contexts. With an introduction to the most relevant concepts of neuroscience, neurophysiological techniques, simulators and case studies in aviation environments, it is a must-have for both students and scientists in the field of aeronautic and biomedical engineering, as well as for various professionals in the aviation world. This is the first book to intensively apply neurosciences to the evaluation of human factors and mental states in aviation. |
You may like...
Advancements in Bio-Medical Image…
Rijwan Khan, Indrajeet Kumar
Hardcover
R8,408
Discovery Miles 84 080
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
Biomedical and Business Applications…
Richard S Segall, Gao Niu
Hardcover
R7,022
Discovery Miles 70 220
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,308
Discovery Miles 33 080
Engineered Biomaterials: Progress And…
P A Hassan, Biji Balakrishnan, …
Hardcover
R5,643
Discovery Miles 56 430
|