![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
This book describes these exciting new developments, and presents experimental and computational findings that altogether describe the frontier of knowledge in cellular and biomolecular mechanics, and the biological implications, in health and disease. The book is written for bioengineers with interest in cellular mechanics, for biophysicists, biochemists, medical researchers and all other professionals with interest in how cells produce and respond to mechanical loads.
In the past few years, an increasing number of colleges and universities have added courses in biomedical ethics to their curricula. To some extent, these additions serve to satisfy student demands for "relevance. " But it is also true that such changes reflect a deepening desire on the part of the academic community to deal effectively with a host of problems which must be solved if we are to have a health-care delivery system which is efficient, humane, and just. To a large degree, these problems are the unique result of both rapidly changing moral values and dramatic advances in biomedical technology. The past decade has witnessed sudden and conspicuous controversy over the morality and legality of new practices relating to abortion, therapy for the mentally ill, experimentation using human subjects, forms of genetic interven tion, and euthanasia. Malpractice suits abound, and astronomical fees for malpractice insurance threaten the very possibility of medical and health-care practice. Without the backing of a clear moral consensus, the law is frequently forced into resolving these conflicts only to see the moral issues involved still hotly debated and the validity of the existing law further questioned. Take abortion, for example. Rather than settling the legal issue, the Supreme Court's original abortion decision in Roe v. Wade (1973), seems only to have spurred further legal debate. And of course, whether or not abortion is a mo rally ac ceptable procedure is still the subject of heated dispute."
This book discusses advancements in the applications of nanoparticles in tissue engineering. It examines the applications of nanobiomaterials in hard tissue regeneration, fabrication, and characterization. The book also analyzes the implication of three-dimensional and four-dimensional fabrication techniques for the production of the scaffold in tissue engineering and their advantages over conventional scaffold production techniques. Further, it presents smart materials used in making 4-D scaffolds that imitate the dynamic response of tissue against natural stimuli and adapt to the microenvironment by changing their conformation or other properties. It also summarizes the growing field of biomolecular detection and biosensors in tissue engineering and the increasing prominence of nanoparticles in the biosensors. Further, it provides the future outlook and associated challenges of the application of nanomaterials in tissue engineering.
The original edition of this text, Clinical Evaluation of Medical Devices: Principles and Case Studies, provided the first overview of key pr- ciples and approaches to medical device clinical trials, illustrated with a series of detailed, real-world case studies. The book is designed as a resource for clinical professionals and regulatory specialists working in the field of new medical device development and marketing. Since the first edition of this text was published in 1997, the rapid pace of inno- tion in health care technologies continues to yield exciting and important new products. The regulatory landscape has also evolved, reflecting some of the changes and needs within the medical device industry. The purpose of Clinical Evaluation of Medical Devices: Principles and Case Studies, Second Edition is to provide an updated and expanded presentation of the scientific methods and regulatory requirements applied to the study of new significant risk medical devices. The text now includes (1) new information on the requirements and process for gaining reimbursement of new products from Medicare and private insurers, with case studies of research specifically designed for this p- pose as well as health care technology assessment methods; (2) infor- tion on new statistical methodologies applied to medical device trials; and (3) all new case studies, including examples of combination pr- ucts, three-phase development models (i. e. , feasibility, FDA approval, Medicare reimbursement), and novel study designs.
Polyurethanes in Biomedical Applications studies the use of polyurethanes in implanted medical devices. This analysis describes the concepts of polymer science, the manufacture of polyurethanes, and the biological responses to implant polyurethanes, reflecting the developments in biomaterials science and the interdisciplinary nature of bioengineering.
Safety Risk Management for Medical Devices, Second Edition teaches the essential safety risk management methodologies for medical devices compliant with the requirements of ISO 14971:2019. Focusing exclusively on safety risk assessment practices required in the MedTech sector, the book outlines sensible, easily comprehensible, state-of the-art methodologies that are rooted in current industry best practices, addressing safety risk management of medical devices, thus making it useful for those in the MedTech sector who are responsible for safety risk management or need to understand risk management, including design engineers, product engineers, development engineers, software engineers, Quality assurance and regulatory affairs. Graduate-level engineering students with an interest in medical devices will also benefit from this book. The new edition has been fully updated to reflect the state-of-the-art in this fast changing field. It offers guidance on developing and commercializing medical devices in line with the most current international standards and regulations.
The book represents a comprehensive review and synthesis of the biomedical literature that spans over a half-century on a single protein called glyceraldehyde 3-phosphate dehydrogenase (or, GAPDH). Due to the protein's involvement in a vast array of cellular activities, GAPDH is of interest to the cell biologist, immunologist, virologist, biochemist etc. The protein has a significant role in fertility, cancer and neurodegeneration, suggesting that this book can be a vital resource for drug development. GAPDH function may provide insight into anesthesia. Furthermore, GAPDH is highly conserved meaning that the protein found in microorganisms, such as pathogens, remained relatively unchanged in evolution. Pathogens use GAPDH as a virulence factor, offering a unique challenge in developing anti-microbial agents that target this protein. To the evolutionary biologist, a book on the multi-functionality of GAPDH provides a focal point for a cogent discussion on the very origin of life.
This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad range of readers-from students of undergraduate to postgraduate levels and also for researchers, professionals, etc.-who wish to enrich their knowledge on Intelligent Optimization in Biology and Medicine and applications with one single book.
The field of cochlear mechanics has received an increasing interest over the last few decades. In the majority of these studies the researchers use linear systems analysis or linear approximations of the nonlinear (NL) systems. Even though it has been clear that the intact cochlea operates nonlinearly, lack of tools for proper nonlinear analysis, and widely available tools for linear analysis still lead to inefficient andpossiblyincorrect interpretation of the biophysics of the cochlea. An example is the presumption that a change in cochlear stiffness at hair cell level must account for the observed change in tuning (or frequency mapping) due to prestin application. Hypotheses like this need to be addressed in a tutorial that is lucid enough to analyze and explain basic differences. "Cochlear Mechanics"presents a useful and mathematically justified/justifiable approach in the main part of the text, an approach that will be elucidated with clear examples. The book will be useful to scientists in auditory neuroscience, as well as graduate students in biophysics/biomedical engineering."
Biomedical imaging enables physicians to evaluate areas of the body not normally visible, helping to diagnose and examine disease in patients. ""The Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications"" includes recent state-of-the-art methodologies that introduce biomedical imaging in decision support systems and their applications in clinical practice. This ""Handbook of Research"" provides readers with an overview of the emerging field of image-guided medical and biological decision support, bringing together various research studies and highlighting future trends. It includes: 30 authoritative contributions by over 90 of the world's leading experts on diagnostic imaging and biomedical applications from 9 countries; comprehensive coverage of each specific topic, highlighting recent trends and describing the latest advances in the field; and, more than 1,200 references to existing literature and research on diagnostic imaging and biomedical applications. A compendium of over 200 key terms with detailed definitions, this book is organized by topic and indexed, making it a convenient method of reference for all IT/IS scholars and professionals. It features cross-referencing of key terms, figures, and information pertinent to diagnostic imaging and biomedical applications.
Bloom Filter: A Data Structure for Computer Networking, Big Data, Cloud Computing, Internet of Things, Bioinformatics, and Beyond focuses on both the theory and practice of the most emerging areas for Bloom filter application, including Big Data, Cloud Computing, Internet of Things, and Bioinformatics. Sections provide in-depth insights on structure and variants, focus on its role in computer networking, and discuss applications in various research domains, such as Big Data, Cloud Computing, and Bioinformatics. Since its inception, the Bloom Filter has been extensively experimented with and developed to enhance system performance such as web cache. Bloom filter influences many research fields, including Bioinformatics, Internet of Things, computer security, network appliances, Big Data and Cloud Computing.
This book tackles the problem of overshoot and undershoot in blood glucose levels caused by delay in the effects of carbohydrate consumption and insulin administration. The ideas presented here will be very important in maintaining the welfare of insulin-dependent diabetics and avoiding the damaging effects of unpredicted swings in blood glucose - accurate prediction enables the implementation of counter-measures. The glucose prediction algorithms described are also a key and critical ingredient of automated insulin delivery systems, the so-called "artificial pancreas". The authors address the topic of blood-glucose prediction from medical, scientific and technological points of view. Simulation studies are utilized for complementary analysis but the primary focus of this book is on real applications, using clinical data from diabetic subjects. The text details the current state of the art by surveying prediction algorithms, and then moves beyond it with the most recent advances in data-based modeling of glucose metabolism. The topic of performance evaluation is discussed and the relationship of clinical and technological needs and goals examined with regard to their implications for medical devices employing prediction algorithms. Practical and theoretical questions associated with such devices and their solutions are highlighted. This book shows researchers interested in biomedical device technology and control researchers working with predictive algorithms how incorporation of predictive algorithms into the next generation of portable glucose measurement can make treatment of diabetes safer and more efficient.
Janus, the ancient Roman god depicted with two faces is an appropriate metaphor for light therapy. In the right photodynamic therapy conditions, light is able to kill nearly anything that is living such as cancers, microorganisms, parasites, and more. On the opposite face, light of the correct wavelength and proper dose (photobiomodulation) can heal, regenerate, protect, revitalize and restore any kind of dead, damaged, stressed, dying, degenerating cells, tissue, or organ system. This book discusses both sides of Janus' face in regards to light therapy.
Automata Theory and Formal Languages: Concepts and Practices presents the difficult concepts of automata theory in a straightforward manner, including discussions on diverse concepts and tools that play major roles in developing computing machines, algorithms and code. Automata theory includes numerous concepts such as finite automata, regular grammar, formal languages, context free and context sensitive grammar, push down automata, Turing machine, and decidability, which constitute the backbone of computing machines. This book enables readers to gain sufficient knowledge and experience to construct and solve complex machines. Each chapter begins with key concepts followed by a number of important examples that demonstrate the solution. The book explains concepts and simultaneously helps readers develop an understanding of their application with real-world examples, including application of Context Free Grammars in programming languages and Artificial Intelligence, and cellular automata in biomedical problems.
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics" can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries.
- Presents the reasons behind the decisions taken by automated algorithms - Frames eXplainable AI as a bridge between computer scientists and physicians - Emphasizes transparency in data analysis within healthcare - Covers computer vision and deep learning in tandem - Creates space to discuss human-AI relationships in future healthcare
This book provides a state-of-the-art update, as well as perspectives on future directions of research and clinical applications in the implementation of biomechanical and biophysical experimental, theoretical and computational models which are relevant to military medicine. Such experimental and modeling efforts are helpful, on the one hand, in understanding the aetiology, pathophysiology and dynamics of injury development and on the other hand in guiding the development of better equipment and protective gear or devices that should ultimately reduce the prevalence and incidence of injuries or lessen their hazardous effects. The book is useful for military-oriented biomedical engineers and medical physicists, as well as for military physiologists and other medical specialists who are interested in the science and technology implemented in modern investigations of military related injuries.
This thesis documents the development of a multifunctional nanoparticle system to enhance the chemotherapeutic efficiency of anti-cancer drugs, and contributes to research that helps decrease the side-effects in cancer patients while simultaneously increasing their survival rates. The work begins with an introduction to nanomedicine and cancer therapy, and contains a literature review on magnetic, gold, and core-shell nanoparticles. It also covers synthesis techniques, properties, various surface modifications, and the importance of magnetic and gold nanoparticles. The author dedicates a chapter to characterization techniques, experimental setup, and cell cultivation techniques for in-vitro studies. Further chapters describe the background, characterizations, and applications of multifunctional magnetite coated gold core-shell nanoparticles, and the doping of cobalt to magnetite and manganese to magnetite nanoparticles. The important highlight of this research was the control of the size, shape, composition, and surface chemistry of nanoparticles.
Brain and Behavior Computing offers insights into the functions of the human brain. This book provides an emphasis on brain and behavior computing with different modalities available such as signal processing, image processing, data sciences, statistics further it includes fundamental, mathematical model, algorithms, case studies, and future research scopes. It further illustrates brain signal sources and how the brain signal can process, manipulate, and transform in different domains allowing researchers and professionals to extract information about the physiological condition of the brain. Emphasizes real challenges in brain signal processing for a variety of applications for analysis, classification, and clustering. Discusses data sciences and its applications in brain computing visualization. Covers all the most recent tools for analysing the brain and it's working. Describes brain modeling and all possible machine learning methods and their uses. Augments the use of data mining and machine learning to brain computer interface (BCI) devices. Includes case studies and actual simulation examples. This book is aimed at researchers, professionals, and graduate students in image processing and computer vision, biomedical engineering, signal processing, and brain and behavior computing.
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The volume is based on the 2021 ApplePies Conference, held online in September 2021, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
This book describes current and potential use of artificial intelligence and computational intelligence techniques in biomedicine and other application areas. Medical applications range from general diagnostics to processing of X-ray images to e-medicine-related privacy issues. Medical community understandably prefers methods that have been successful other on other application areas, where possible mistakes are not that critical. This book describes many promising methods related to deep learning, fuzzy techniques, knowledge graphs, and quantum computing. It also describes the results of testing these new methods in communication networks, education, environmental studies, food industry, retail industry, transportation engineering, and many other areas. This book helps practitioners and researchers to learn more about computational intelligence methods and their biomedical applications-and to further develop this important research direction.
This book discusses communications technologies used in the field of healthcare, including IoT, soft computing, machine learning, big data, augmented reality, and wearable sensors. The book presents various applications that are helpful for research scholars and scientists who are working toward identifying and pinpointing the potential of this technology. The book also helps researchers and practitioners to understand and analyze the e-healthcare architecture through IoT and the state-of-the-art in IoT countermeasures with real-time challenges. Topics of interest include healthcare systems based on advanced development boards, mobile health parameters recording and monitoring systems, remote health / patient monitoring, hospital operations management, abnormality / disease detection by IoT devices, and efficient drug management. The book is relevant to a range of researchers, academics, and practitioners working on the intersection of IoT and healthcare.
This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with a pre-operative use of the models. Then, the volume addresses the two key issues raised for an intra-operative use of soft tissues models, namely (Part 2) "how to estimate the in vivo mechanical behavior of the tissues?" (i.e. what are the values of the mechanical parameters that can deliver realistic patient-specific behavior?) and (Part 3) "how to build a modeling platform that provides generic real-time (or at least interactive-time) numerical simulations?" "
Biomaterials repair, reinforce or replace damaged functional parts of the (human) body. All mechanical and biological interactions between an implant and the body occur across the interface, which has to correspond as nearly as possible to its particular function. Much of the progress in adapting polymer materials for use in a biological environment has been obtained through irradiation techniques. For this reason the most recent developments in four key areas are reviewed in this special volume: (1) the analysis of the topology and the elemental composition of a functional surface, (2) the chemical modification of the surface which results in highly pure, sterile and versatile surfaces, (3) the sterilisation of implantable devices via ionising radiation and its possible effects on the structural mechanical properties of polymers, and (4) the radiation effects on living cells and tissues which are of particular importance for radiation protection and radiotherapy.
This book reports on the latest advances in complex and nonlinear cardiovascular physiology aimed at obtaining reliable, effective markers for the assessment of heartbeat, respiratory, and blood pressure dynamics. The chapters describe in detail methods that have been previously defined in theoretical physics such as entropy, multifractal spectra, and Lyapunov exponents, contextualized within physiological dynamics of cardiovascular control, including autonomic nervous system activity. Additionally, the book discusses several application scenarios of these methods. The text critically reviews the current state-of-the-art research in the field that has led to the description of dedicated experimental protocols and ad-hoc models of complex physiology. This text is ideal for biomedical engineers, physiologists, and neuroscientists. This book also: Expertly reviews cutting-edge research, such as recent advances in measuring complexity, nonlinearity, and information-theoretic concepts applied to coupled dynamical systems Comprehensively describes applications of analytic technique to clinical scenarios such as heart failure, depression and mental disorders, atrial fibrillation, acute brain lesions, and more Broadens readers' understanding of cardiovascular signals, heart rate complexity, heart rate variability, and nonlinear analysis |
You may like...
Design of Nanostructures for Versatile…
Alexandru Mihai Grumezescu
Paperback
Protein Folding in Silico - Protein…
Irena Roterman-Konieczna
Hardcover
R3,855
Discovery Miles 38 550
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Drug Delivery Nanosystems for Biomedical…
Chandra P Sharma
Hardcover
|