Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
The book covers the integration of Internet of Things (IoT) and Artificial Intelligence (AI) to tackle applications in smart healthcare. The authors discuss efficient means to collect, monitor, control, optimize, model, and predict healthcare data using AI and IoT. The book presents the many advantages and improvements in the smart healthcare field, in which ubiquitous computing and traditional computational methods alone are often inadequate. AI techniques are presented that play a crucial role in dealing with large amounts of heterogeneous, multi-scale and multi-modal data coming from IoT infrastructures. The book is intended to cover how the fusion of IoT and AI allows the design of models, methodologies, algorithms, evaluation benchmarks, and tools can address challenging problems related to health informatics, healthcare, and wellbeing.
This book provides an introduction to qualitative and quantitative aspects of human physiology. It examines biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, such as electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text, there are introductions to measuring and quantifying physiological processes using both signaling and imaging technologies. This new edition includes updated material on pathophysiology, metabolism and the TCA cycle, as well as more advanced worked examples. This book describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, and the electrical and mechanical activity of the heart, and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reaction kinetics, pharmacokinetic modelling and tracer kinetics. It appeals to final year biomedical engineering undergraduates and graduates alike, as well as to practising engineers new to the fields of bioengineering or medical physics.
This book focuses on the use of graphene and its derivatives for application in cancer diagnosis and therapy. Readers are introduced to graphene nanomaterial history, synthesis procedures, properties, modifications, and applications in cancer research and development. The wide-ranging properties of graphene nanomaterials can be utilized for various cancer therapeutic and diagnostic applications. The contents discuss these applications with simple graphical overviews and provide comprehensive detail for a better understanding of the state of the art. The book will be of interest to professionals and academic researchers alike.
This edited book explores the use of technology to enable us to visualise the life sciences in a more meaningful and engaging way. It will enable those interested in visualisation techniques to gain a better understanding of the applications that can be used in visualisation, imaging and analysis, education, engagement and training. The reader will also be able to learn about the use of visualisation techniques and technologies for the historical and forensic settings. The chapters presented in this volume cover such a diverse range of topics, with something for everyone. We present here chapters on 3D visualising novel stent grafts to aid treatment of aortic aneuryms; confocal microscopy constructed vascular models in patient education; 3D patient specific virtual reconstructions in surgery; virtual reality in upper limb rehabilitation in patients with multiple sclerosis and virtual clinical wards. In addition, we present chapters in artificial intelligence in ultrasound guided regional anaesthesia; carpal tunnel release visualisation techniques; visualising for embryology education and artificial intelligence data on bone mechanics. Finally we conclude with chapters on visualising patient communication in a general practice setting; digital facial depictions of people from the past; instructor made cadaveric videos, novel cadaveric techniques for enhancing visualisation of the human body and finally interactive educational videos and screencasts. This book explores the use of technologies from a range of fields to provide engaging and meaningful visual representations of the biomedical sciences. It is therefore an interesting read for researchers, developers and educators who want to learn how visualisation techniques can be used successfully for a variety of purposes, such as educating students or training staff, interacting with patients and biomedical procedures in general.
This contributed volume reviews the latest advances in all the new technologies currently developed for MagnetoEncephaloGraphy (MEG) recordings, as well as sensor technologies and integrated sensor arrays for on-scalp MEG. The book gives an account of the first MEG imaging studies and explores the new field of feasible, experimental paradigms of on-scalp MEG. This is an ideal book for engineers, researchers, and students in the neurosciences interested in MEG imaging.
This innovative textbook brings together modern concepts in mathematical epidemiology, computational modeling, physics-based simulation, data science, and machine learning to understand one of the most significant problems of our current time, the outbreak dynamics and outbreak control of COVID-19. It teaches the relevant tools to model and simulate nonlinear dynamic systems in view of a global pandemic that is acutely relevant to human health. If you are a student, educator, basic scientist, or medical researcher in the natural or social sciences, or someone passionate about big data and human health: This book is for you! It serves as a textbook for undergraduates and graduate students, and a monograph for researchers and scientists. It can be used in the mathematical life sciences suitable for courses in applied mathematics, biomedical engineering, biostatistics, computer science, data science, epidemiology, health sciences, machine learning, mathematical biology, numerical methods, and probabilistic programming. This book is a personal reflection on the role of data-driven modeling during the COVID-19 pandemic, motivated by the curiosity to understand it.
Despite the social and economic importance of biomedical and health research, it is only fairly recently that the European Community became involved in research and technological development in this research sector. The general goal of the programme is clearly to contribute to a better quality of life by improving health, and its distinctive feature is to strengthen European collaboration in order to achieve this goal. The ultimate goal of the biomedical engineering part of the programme has been to contribute to the improvement of the quality of health care, as well as to the containment of its costs. Health technology assessment has gained further importance in view of the completion of the internal market within the EC. Such assessment may provide essential information for decision making at all levels (i.e. political, health services, medical).
This book describes the essential requirements for the realization of neuromorphic systems, where memristive devices play a key role. A comprehensive description to organic memristive devices, including working principles and models of the function, preparation methods, properties and different applications is presented. A comparative analysis of organic and inorganic systems is given. The author discusses all aspects of current research in organic memristive devices: fabrication techniques, properties, synapse mimicking circuits, and neuromorphic systems (including perceptrons), etc. Describes requirements of electronic circuits and systems to be considered as neuromorphic systems; Provides a single-source reference to the state-of-the-art in memristive devices as key elements of neuromorphic systems; Provides a comparative analysis of advantages and drawbacks between organic and inorganic devices and systems; Includes a systematic overview of organic memristive devices, including fabrication methods, properties, synapse mimicking circuits, and neuromorphic systems; Discusses a variety of unconventional applications, based on bio-inspired circuits and neuromorphic systems.
Features: • Provides an accessible introduction to the subject. • Up to date with the latest advances in emerging technologies and procedures. • Provides a historical overview of CT technology.
The surge in COVID-19 cases leading to hospitalizations around the world quickly depleted hospital resources and reserves, forcing physicians to make extremely difficult life-or-death decisions on ventilator allocation between patients. Leaders in academia and industry have developed numerous ventilator support systems using both consumer- and industry-grade hardware to sustain life and to provide intermediate respiratory relief for hospitalized patients. This book is the first of its kind to discuss the respiratory pathophysiology underlying COVID-19, explain ventilator mechanics, provide and evaluate a repository of innovative ventilator support devices conceived amid the pandemic, and explain both hardware and software components necessary to develop an inexpensive ventilator support device. This book serves both as a historical record of the collaborative and innovative response to the anticipated ventilator shortage during the COVID-19 pandemic and as a guide for physicians, engineers, and DIY'ers interested in developing inexpensive transitory ventilator support devices.
This book is written for the users and designers of joint replacements. In its second extended edition it conveys to the reader the knowledge accumulated by the authors during their forty year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter describes the design methodology now required for joint replacement in the USA and EU countries. The remaining chapters provide a history of joint replacement, an evaluation of earlier and current devices and sample case histories of some of the authors' devices. The present second edition includes various additional case reports as well as a new chapter devoted to the shoulder. Drs. Buechel, an orthopaedic surgeon, and Pappas, a professor of Mechanical Engineering, are the designers of several successful joint replacement systems. The most well-known of these is the pioneering LCS knee replacement.
This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with a pre-operative use of the models. Then, the volume addresses the two key issues raised for an intra-operative use of soft tissues models, namely (Part 2) "how to estimate the in vivo mechanical behavior of the tissues?" (i.e. what are the values of the mechanical parameters that can deliver realistic patient-specific behavior?) and (Part 3) "how to build a modeling platform that provides generic real-time (or at least interactive-time) numerical simulations?" "
This book presents new systems and circuits for implantable biomedical applications, using a non-conventional way to transmit energy and data via ultrasound. The authors discuses the main constrains (e.g. implant size, battery recharge time, data rate, accuracy of the acoustic models) from the definition of the ultrasound system specification to the in-vitro validation.The system described meets the safety requirements for ultrasound exposure limits in diagnostic ultrasound applications, according to FDA regulations. Readers will see how the novel design of power management architecture will meet the constraints set by FDA regulations for maximum energy exposure in the human body. Coverage also includes the choice of the acoustic transducer, driven by optimum positioning and size of the implanted medical device. Throughout the book, links between physics, electronics and medical aspects are covered to give a complete view of the ultrasound system described. Provides a complete, system-level perspective on the use of ultrasound as energy source for medical implants; Discusses system design concerns regarding wireless power transmission and wireless data communication, particularly for a system in which both are performed on the same channel/frequency; Describes an experimental study on implantable battery powered biomedical systems; Presents a fully-integrated, implantable system and hermetically sealed packaging.
Over the last few decades, there are increasing public awareness of adverse events involving engineering failures that not only led to monetary losses but also more importantly, human injuries and deaths. Whilst it is vital for an engineering professional or student to acquire the necessary technical knowledge and skills in their respective field, they must also understand the ethical essences that are relevant to their profession. Engineering professionals like biomedical engineers, need to appreciate the fundamentals of best practices and recognise how any derivation from such practices can have undesirable impacts on human lives. Through this book, it is hoped that readers would draw the relevance between the study of ethics and biomedical engineering. The book would be a useful source and reference for college-level and university-level students. Moreover, the contents are written so as to also provide valuable insights even for existing biomedical engineers and those enrolled in continual engineering education programs.
Biomaterials repair, reinforce or replace damaged functional parts of the (human) body. All mechanical and biological interactions between an implant and the body occur across the interface, which has to correspond as nearly as possible to its particular function. Much of the progress in adapting polymer materials for use in a biological environment has been obtained through irradiation techniques. For this reason the most recent developments in four key areas are reviewed in this special volume: (1) the analysis of the topology and the elemental composition of a functional surface, (2) the chemical modification of the surface which results in highly pure, sterile and versatile surfaces, (3) the sterilisation of implantable devices via ionising radiation and its possible effects on the structural mechanical properties of polymers, and (4) the radiation effects on living cells and tissues which are of particular importance for radiation protection and radiotherapy.
The future of gene editing in humans will involve the use of CRISPR. How we think about the combination of the scientific, ethical, and moral aspects of this technology is paramount to the success or failure of CRISPR in humans. Unfortunately, the current scientific discussion around CRISPR in humans has left ethics trailing behind due to the rapid pace of innovation. New modes of ethics and stakeholder participation are needed to keep pace with rapid scientific advances and provide the necessary policy and ethical frameworks necessary to help CRISPR flourish as an important health care tool to treat human disease. This requires intense interdisciplinary collaboration and discussion between scientists and philosophers, policymakers and legal scholars, and the public. Dr. Michael W. Nestor (a neuroscientist who actively uses CRISPR in pre-clinical research) and Professor Richard Wilson (a philosopher who focuses on anticipatory ethics) set out to develop a new ethical approach considering the use of CRISPR in human targeted therapies. The field of anticipatory ethics is uniquely poised to tackle questions in fast-evolving technical areas where the pace of innovation outstrips traditional philosophical approaches. Furthermore, because of its "anticipatory" nature, this type of analysis provides the opportunity to look ahead and into the future concerning potential uses of CRISPR in humans, uses that are not currently possible. Nestor and Wilson collaborate both scientifically and philosophically in this book to forecast potential outcomes as the scientific and medical community goes beyond using CRISPR to correct genes that underlie diseases where a single gene is involved. Instead, Nestor and Wilson envision CRISPR in complex, multigenic disorders with a specific focus on the use of CRISPR to edit genes involved in mental traits like IQ or other cognitive characteristics. They argue that the use of CRISPR to modify genes that are potentially important for mental traits represents a particular category for special consideration from scientists, policymakers, the public, and other stakeholders. Nestor and Wilson explain why using CRISPR to alter mental states is very different from treating a disease like cancer by combining the latest scientific advancements with anticipatory ethics and philosophical phenomenology. Their analysis considers the role that mental states play in personhood and the lived experience-as genes that can change mental/cognitive attributes like IQ have wide-ranging effects on the lived experience in ways that are categorically different from other attributes. This book was written to set a non-exhaustive framework for shared understanding and discussion across disciplines and appeal to scientists and non-scientists alike. This appeal is made inclusively, inviting all stakeholders to engage in active dialogue about the appropriate context for using CRISPR and other gene-editing technologies in humans. It provides policy analysis and recommendations for assuring the most inclusive, equitable, and ethically sound use of CRISPR in humans, concerning its positive potential to treat mental conditions like depression, schizophrenia, Alzheimer's disease, autism, and the potential to induce other cognitive enhancements.
Following many reports that were published in the last two decades
on correlations of multiphase structures of the surface of
materials with their antithrombogenicity or biocompatibility a
research project ''Design of Multiphase Biomedical Materials'' was
carried out in Japan between 1982 and 1986. The objective of this
research project was to elucidate various aspects of biomedical
behaviour of multiphase systems at the interface with living bodies
at the molecular, cellular and tissue levels. Multiphase materials
studied cover polymers having microphase-separated structures,
hydrogels, immobilized enzymes (or cells), ceramics and metallic
materials.
This open access book describes modern applications of computational human modelling to advance neurology, cancer treatment, and radio-frequency studies including regulatory, safety, and wireless communication fields. Readers working on any application that may expose human subjects to electromagnetic radiation will benefit from this book's coverage of the latest models and techniques available to assess a given technology's safety and efficacy in a timely and efficient manner. This is an Open Access book.
This book presents a novel continuum finite deformation framework addressing the complex interactions among electrostatics, species transport, and mechanics in solid networks immersed in a fluid phase of solvent and ions. Grounded on cutting-edge multiphysics theories for soft active materials, the proposed model is primarily applied to ionic polymer metal composites (IPMCs). First, the influence of shear deformation on the IPMC response is analyzed through semi-analytical solutions obtained via the method of matched asymptotic expansions. Second, the novel electrochemo-poromechanical theory is used to predict the curvature relaxation and electric discharge that are observed in IPMC actuation and sensing, respectively, under a sustained stimulus. This newly formulated theory is, in turn, applied to biological cell clusters. Here, important mechanical considerations are integrated into classical bioelectrical models, thus offering novel insights into the interplay of mechanical and electrical signaling in the coordination of developmental processes.
This volume contains the papers of the 1st Workshop IFToMM for Sustainable Development Goals (I4SDG), held online on November 25-26, 2021. The main topics of the workshop include the aspects of theory, design and practice of mechanism and machine science which are instrumental in reaching a sustainable development, such as: biomechanical engineering, sustainable energy systems, robotics and mechatronics, green tribology, computational kinematics, dynamics of machinery, industrial applications of mechanism design, gearing and transmissions, multibody dynamics rotor dynamics, vibrations, humanitarian engineering, and socio-technical systems for sustainable and inclusive development. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that medical and service robotics will drive the technological and societal change in the coming decades.
"Cell and Tissue Engineering" introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of functional tissue equivalents based on the integrated use of isolated cells, biomaterials, and bioreactors. The book also reviews novel techniques for cell and tissue imaging and characterization, some of which are described in detail such as atomic force microscopy. Finally, mathematical modeling methods are presented as valuable and indispensable tools in cell and tissue engineering. Numerous illustrations enhance the quality and ease of use of the presented material.
Highlights the utilization of nanofillers. Investigates the moisture absorption and ageing on the physio-chemical, mechanical, thermal properties of the vinyl ester-based composites. Considers the influence of hybridization, fibre architecture, and fibre-ply orientation on the mechanical and thermal properties of vinyl ester-based biocomposites. Discusses the effects of the alkali treatment. Chapters are written by global experts to cover a diverse scope of industry applications for fibre-reinforced polymer composites.
This text provides novel smart network systems, wireless telecommunications infrastructures, and computing capabilities to help healthcare systems using computing techniques like IoT, cloud computing, machine and deep learning Big Data along with smart wireless networks. It discusses important topics, including robotics manipulation and analysis in smart healthcare industries, smart telemedicine framework using machine learning and deep learning, role of UAV and drones in smart hospitals, virtual reality based on 5G/6G and augmented reality in healthcare systems, data privacy and security, nanomedicine, and cloud-based artificial intelligence in healthcare systems. The book: * Discusses intelligent computing through IoT and Big Data in secure and smart healthcare systems. * Covers algorithms, including deterministic algorithms, randomized algorithms, iterative algorithms, and recursive algorithms. * Discusses remote sensing devices in hospitals and local health facilities for patient evaluation and care. * Covers wearable technology applications such as weight control and physical activity tracking for disease prevention and smart healthcare. This book will be useful for senior undergraduate, graduate students, and academic researchers in areas such as electrical engineering, electronics and communication engineering, computer science, and information technology. Discussing concepts of smart networks, advanced wireless communication, and technologies in setting up smart healthcare services, this text will be useful for senior undergraduate, graduate students, and academic researchers in areas such as electrical engineering, electronics and communication engineering, computer science, and information technology. It covers internet of things (IoT) implementation and challenges in healthcare industries, wireless network, and communication-based optimization algorithms for smart healthcare devices.
Features Combines all topics into one comprehensive introduction. Explores practical applications of theory to healthcare. Can be used to accompany the NHS Modernising Scientific Careers syllabus.
This timely book presents innovative technologies for use in the diagnosis, monitoring, and treatment of brain disease. These technologies offer exciting possibilities in the medical field owing to their low-cost, portability and safety. The authors address cerebrovascular diseases such as stroke, ischemia, haemorrhage, and vasospasm, these diseases having an ever-increasing societal relevance due to the global ageing population. The authors describe the potential of novel techniques such as microwave imaging and present innovative modalities for treatment of brain tumours using electromagnetic fields and nano-composites, as well as for monitoring brain temperature during surgery. Finally, Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy addresses the perspectives which arise from multi-modal multi-spectral EM modalities, which make a synergic use of the different portions of the electromagnetic spectrum. This text will be of interest to readers from various different areas, given the fundamental interdisciplinarity of the subject matter. This includes researchers or practitioners in the field of electrical engineering, applied physicists, and applied mathematicians working on imaging applications for biomedical and electromagnetic technologies. Neurologists and radiologists may also find this book of interest, as may graduate students in these areas. |
You may like...
Dementia Lab 2021: Supporting Ability…
Rens Brankaert, Caylee Raber, …
Hardcover
R4,476
Discovery Miles 44 760
Current and Future Aspects of…
Islam Ahmed Hamed Khalil
Hardcover
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
Engineered Biomaterials: Progress And…
P A Hassan, Biji Balakrishnan, …
Hardcover
R5,643
Discovery Miles 56 430
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
Advances in Telemedicine for Health…
Tarik a. Rashid, Chinmay Chakraborty, …
Hardcover
|