![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
In this book, leading authors in the field discuss developments of Ambient Assisted Living. The contributions have been chosen and invited at the 8th AAL Congress, Frankfurt/M. The meeting presents new technological developments which support the autonomy and independence of individuals with special needs. The 8th AAL Congress focusses its attention on technical assistance systems and their applications in homecare, health and care.
In the past decades, interdisciplinary investigations overlapping biology, medicine, information science, and engineering have formed a very exciting and active field that attracts scientists, medical doctors, and engineers with knowledge in different domains. A few examples of such investigations include neural prosthetic implants that aim to improve the quality of life for patients suffering from neurologic disease and injury; brain machine interfaces that sense, analyze, and translate electrical signals from the brain to build closed-loop, biofeedback systems; and fundamental studies of intelligence, cognitive functions, and psychological behaviors correlated to their neurological basis. Although this interdisciplinary area is still in its infancy, it can potentially create some of the most significant impact: treating diseases that are considered untreatable, interpretation and communication of neuron ensembles, or even a revolutionary perception and understanding of life different from philosophical or immaterial approaches. Fortunately, several academic societies recognize the value and impact of this growing field, firmly supporting related research. Such support will drive a booming future in the next twenty or thirty years. Research in this areais frequently project-driven, and the
generated knowledge has been scattered in different fields of
neuroscience, computation, material and technology, circuits and
system, clinical reports, and psychology the scope considerably
across the boundary of traditionally defined disciplines. "Neural
Computation, Neural Devices, and Neural Prosthesis" is intended to
assemble such knowledge, from there suggesting a systematic
approach guiding future educational and research activities. The
targeted audience includes both students and researchers.
This book introduces the reader to drug delivery with specific emphasis on the use of nanoparticles. It covers properties, characterization, and preparation of different types of nanoparticles and discusses recent advances in their structural design and biomedical application, as well as the issues and challenges associated with their design and use. Some of the topics covered include the potential application of nanoparticles in biomedical fields, hazards associated with use of nanoparticles for drug delivery, size-dependent factors in drug delivery applications, different organic, inorganic and their hybrid systems used in drug delivery, etc. It also highlights use of nanoparticles in controlled and targeted drug delivery, and their application in stimuli-responsive, especially pH-responsive, drug release. Additionally, it also focuses on biomimetic nanoparticles, challenges faced in the designing of nanoparticles for drug delivery in cancer, viral and bacterial diseases. The contents of this volume will be useful to researchers and professionals working on advances in targeted drug delivery systems.
Designing Inclusive Interactions contains the proceedings of the fifth Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT), incorporating the 8th Cambridge Workshop on Rehabilitation Robotics, held in Cambridge, England, in March 2010. It contains contributions from an international group of leading researchers in the fields of Universal Access and Assistive Technology. This conference will mainly focus on the following principal topics: 1. Designing assistive and rehabilitation technology for working and daily living environments 2. Measuring inclusion for the design of products for work and daily living 3. Inclusive interaction design and new technologies for inclusive design 4. Assembling new user data for inclusive design 5. The design of accessible and inclusive contexts: work and daily living environments 6. Business advantages and applications of inclusive design 7. Legislation, standards and government awareness of inclusive design
This second edition volume provides an overview of some of the types of nanostructures commonly used in nanobiomedicine. The chapters in this book discuss practical information on the synthesis and characterization of a variety of solution-phase and surface-bound nanomaterials, with examples of how they can be used in sensing, imaging, and therapeutics. Specific topics include the synthesis and characterization of molecule and biomolecule-functionalized nanoconjugates with gold, iron oxide, or polymeric cores; the development of biosensing, imaging, and therapeutic applications of multicomponent/multifunctional nanostructures; and the application of flow cytometry in nanobiomedicine. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.< Thorough and comprehensive, Biomedical Nanotechnology: Methods and Protocols, Second Edition is a useful resource for scientists and researchers at all levels who are interested in working in a new area of nanoscience and technology, or in expanding their knowledge base in their current field.
This book presents the timeline of immunodiagnostics evolution, including advancements in immunological/nucleic acid probes, assay design, labelling techniques, and devices for signal transduction and acquisition. In the past few years, enzyme and nanocatalyst-based immune assays have undergone numerous modifications to enhance their sensitivity and potential for automation. Further, to reduce production costs and the use of laboratory animals, engineering small antibodies and nucleic acid probes (aptamers) has become increasingly popular in the development of novel and powerful bioassays. In light of the notable advancements in immunodiagnostics, this book highlights the combined efforts of clinicians, biotechnologists, material scientists, nanotechnologists and basic scientists in a coherent and highly structured way. The book takes readers on the journey of immunodiagnostic technologies, from their introduction to the present.
This book highlights electromagnetic actuation (EMA) and sensing systems for a broad range of applications including targeted drug delivery, drug-release-rate control, catheterization, intravitreal needleless injections, wireless magnetic capsule endoscopy, and micromanipulations. It also reviews the state-of-the-art magnetic actuation and sensing technologies with remotely controlled targets used in biomedicine.
Computational Intelligence is comparatively a new field but it has made a tremendous progress in virtually every discipline right from engineering, science, business, m- agement, aviation to healthcare. Computational intelligence already has a solid track-record of applications to healthcare, of which this book is a continuation. We would like to refer the reader to the excellent previous volumes in this series on computational intelligence in heal- care [1-3]. This book is aimed at providing the most recent advances and state of the art in the practical applications of computational intelligence paradigms in healthcare. It - cludes nineteen chapters on using various computational intelligence methods in healthcare such as intelligent agents and case-based reasoning. A number of fielded applications and case studies are presented. Highlighted are in particular novel c- putational approaches to the semantic management of health information such as in the Web 2.0, mobile agents such as in portable devices, learning agents capable of adapting to diverse clinical settings through case-based reasoning, and statistical - proaches in computational intelligence. This book is targeted towards scientists, application engineers, professors, health professionals, professors, and students. Background information on computational intelligence has been provided whenever necessary to facilitate the comprehension of a broad audience including healthcare practitioners.
This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doing so, it provides a "snapshot" of the current research at the interface between physiological signal analysis and machine learning. It also helps clarify a number of dilemmas and encourages further investigations in this field, to explore rational applications of feature engineering and computational intelligence in ECG monitoring. The book is intended for researchers and graduate students in the field of biomedical engineering, ECG signal processing, and intelligent healthcare.
The generation of tridimensional tissues, assembled from scaffolding materials populated with biologically functional cells, is the great challenge and hope of tissue bioengineering and regenerative medicine. The generation of biomaterials capable of harnessing the immune system has been particularly successful. This book provides a comprehensive view of how immune cells can be manipulated to suppresses inflammation, deliver vaccines, fight cancer cells, promote tissue regeneration or inhibit blood clotting and bacterial infections by functionally engineered biomaterials. However, long-lived polymers, such as those employed in orthopedic surgery or vascular stents, can often induce an immune reaction to their basic components. As a result, this book is also an important step towards coming to understand how to manipulate biomaterials to optimize their beneficial effects and downplay detrimental immune responses.
Nanomedicine is the field of science that deals with organic applications of medicine at the nano-scale level. It primarily addresses finding, anticipating, and treating sickness, as well as using nanotechnology to assist in controlling human frameworks at the cellular level. The nature of nanotechnology allows it to address numerous medical issues in humans. This book offers comprehensive information to better comprehend and apply multifunctional nanoparticles in nanomedicine, and thus open avenues in the field. Medicating at the nanolevel is an exceptional therapeutic avenue, as it avoids symptoms associated with conventional medicines. This book investigates recent insights into structuring novel drug delivery frameworks. It concentrates on the physical characteristics of drug delivery transporters, and the preliminary procedures involved in their use. The book offers in-depth detail that benefits academics and researchers alike, containing broad research from experts in the field, and serves as a guide for students and researchers in the field of nanomedicine, drug delivery, and nanotechnology.
This book gives a comprehensive overview of the rapidly evolving field of three-dimensional (3D) printing, and its increasing applications in the biomedical domain. 3D printing has distinct advantages like improved quality, cost-effectiveness, and higher efficiency compared to traditional manufacturing processes. Besides these advantages, current challenges and opportunities regarding choice of material, design, and efficiency are addressed in the book. Individual chapters also focus on select areas of applications such as surgical guides, tissue regeneration, artificial scaffolds and implants, and drug delivery and release. This book will be a valuable source of information for researchers and professionals interested in the expanding biomedical applications of 3D printing.
This volume describes and discusses recent advances in angiogenesis research. The chapters are organized to address all biological length scales of angiogenesis: molecular, cellular and tissue in both in vivo and in vitro settings. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. Angiogenesis experts from diverse fields including engineering, cell and developmental biology, chemistry and physics will be invited to contribute chapters which focus on the mechanical and chemical signals which affect and promote angiogenesis.
This thesis describes the challenging task of developing high critical temperature superconducting quantum interference devices (high-Tc SQUIDs) and using them as sensors for biomedical applications, including magnetic immunoassays, magnetoencephalography and magnetic resonance imaging (MRI). The first part of this work discusses the development of fast magnetic immunoassays, which can be used to improve the sensitivity, or to create new, unique point-of-care diagnostics systems. The second part shows that high-Tc SQUIDs might make magnetoencephalography more available, thus opening the field of high-Tc SQUID-based magnetoencephalography for recording brain functions. This technique can be combined with ultra-low field MRI which is discussed in the last part. This combination may provide a new unique tool for studies of brain functions. This work does not simply improve on existing technology but opens possibilities for novel advanced medical devices and techniques.
This book concentrates on the design and development of integrated optic waveguide sensors using silicon based materials. The implementation of such system as a tool for detecting adulteration in petroleum based products as well as its use for detection of glucose level in diabetes are highlighted. The first chapters are dedicated to the development of the theoretical model while the final chapters are focused on the different applications of such sensors. It gives the readers the full background in the field of sensors, reasons for using silicon oxynitride as a potential waveguide material as well as its fabrication processes and possible uses.
The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.
Neural activity in the human brain generates coherent synaptic and intracellular currents in cortical columns that create electromagnetic signals which can be measured outside the head using magnetoencephalography (MEG) and electroencephalography (EEG). Electromagnetic brain imaging refers to techniques that reconstruct neural activity from MEG and EEG signals. Electromagnetic brain imaging is unique among functional imaging techniques for its ability to provide spatio-temporal brain activation profiles that reflect not only where the activity occurs in the brain but also when this activity occurs in relation to external and internal cognitive events, as well as to activity in other brain regions. Adaptive spatial filters are powerful algorithms for electromagnetic brain imaging that enable high-fidelity reconstruction of neuronal activity. This book describes the technical advances of adaptive spatial filters for electromagnetic brain imaging by integrating and synthesizing available information and describes various factors that affect its performance. The intended audience include graduate students and researchers interested in the methodological aspects of electromagnetic brain imaging.
Research on bacterial adhesion and its significance is a major field involving many different aspects of nature and human life, such as marine science, soil and plant ecology, most importantly, the biomedical field. The adhesion ofbacteria to the food industry, and human tissue surfaces and implanted biomaterial surfaces is an important step in the patho genesis of infection. Handbook 0/ Bacterial Adhesion: Principles, Methods, and Applications is an outgrowth of the editors' own quest for information on laboratory techniques for studying bacte rial adhesion to biomaterials, bone, and other tissues and, more importantly, a response to significant needs in the research community. This book is designed to be an experimental guide for biomedical scientists, biomaterials scientists, students, laboratory technicians, or anyone who plans to conduct bacterial adhesion studies. More specifically, it is intended for all those researchers facing the chal lenge of implant infections in such devices as orthopedic prostheses, cardiovascular devices or catheters, cerebrospinal fluid shunts or extradural catheters, thoracic or abdominal catheters, portosystemic shunts or bile stents, urological catheters or stents, plastic surgical implants, oral or maxillofacial implants, contraceptive implants, or even contact lenses. It also covers research methods for the study of bacterial adhesion to tis sues such as teeth, respiratory mucosa, intestinal mucosa, and the urinary tract. In short, it constitutes a handbook for biomechanical and bioengineering researchers and students at all levels."
This book gathers together contributions from internationally renowned authors in the field of cardiovascular systems and provides crucial insight into the importance of sex- and gender-concepts during the analysis of patient data. This innovative title is the first to offer the elements necessary to consider sex-related properties in both clinical and basic studies regarding the heart and circulation on multiscale levels (i.e. molecular, cellular, electrophysiologically, neuroendocrine, immunoregulatory, organ, allometric, and modeling). Observed differences at (ultra)cellular and organ level are quantified, with focus on clinical relevance and implications for diagnosis and patient management. Since the cardiovascular system is of vital importance for all tissues, Sex-Specific Analysis of Cardiovascular Function is an essential source of information for clinicians, biologists, and biomedical investigators. The wide spectrum of differences described in this book will also act as an eye-opener and serve as a handbook for students, teachers, scientists and practitioners.
The ongoing process of bio-evolution has produced materials which
are perfectly adapted to fulfil a specific functional role. The
natural world provides us with a multitude of examples of materials
with durability, strength, mechanisms of programmed self-assembly
and biodegradability. The materials industry has sought to observe and appreciate the
relationship between structure, properties and function of these
biological materials. A multidisciplinary approach, building on
recent advances at the forefront of physics, chemistry and
molecular biology, has been successful in producing many synthetic
structures with interesting and useful properties. "Structural Biological Materials: Design and Structure-Property
Relationships" represents an invaluable reference in the field of
biological materials science and provides an incisive view into
this rapidly developing and increasingly important topic within
materials science. This book focuses on the study of three sub-groups of structural
biological materials: Hard tissue engineering, focussing on cortical bone The fundamental relationship between structure and properties,
and certain aspects of design and engineering, are explored in each
of the sub-groups. The importance of these materials, both in their
intrinsic properties and specific functions, are illustrated with
relevant examples. These depict the successful integration of
material properties, architecture and shape, providing a wide range
of optimised designs, tailored to specific functions. Edited by Manuel Elices of the Universidad Politecnica de Madrid, Spain, this book is Volume 4 in the Pergamon Material Series.
This book provides a comprehensive overview of the potential use of graphene-based materials in two important societal areas: medicine and the environment. It discusses how new graphene-based materials can be creatively used for biological purposes, for example as delivery vehicles for diagnostics or therapeutics, ultrasensitive sensors, smart responsive substrates for artificial-tissue design and biomarkers. Moreover, it presents new insights into their use as sorbent or photocatalytic materials for environmental decontamination in water and gas-phase desalination membranes and as sensors for contaminant monitoring, giving relevance to the current discussions on the possible toxicological effects of graphene-based materials.
The authors of this book analyze the influence of specific everyday life situations and contexts on the emotional state of people and the ways in which this can impact measurements of user experience. The book anticipates a future in which products and machines know how we feel and adapt to the feelings they sense (music systems that effectively enhance our current mood with a personalized choice of music, computer dialogues that avoid upcoming frustration, and photo cameras that take pictures whenever we're excited). In all these situations, knowledge of the emotional state of the user is prime information. A previous book published in the Philips Research Book Series, "Probing Experience," illustrated ways to evaluate the user experience through behavioural and physiological parameters. The present book focuses on the influence of context in these measurements. The everyday-life contexts of future products and machines will be always specific, especially in comparison to the standard laboratory situation. Context can impact the experience measurements and influence the occurrence and characteristics of certain signals. On the other hand, independent knowledge of the context could be very valuable for the interpretation of experience measurements. This book provides an overview of the present knowledge on the impact of context, and advocates the need for a joint understanding of its role in the measurement of experience. The authors comprise many experienced researchers on this topic with a wide variety of backgrounds, including business and academia, covering a broad range of context situations.
This book raises questions about the changing relationships between technology, people and health. It examines the accelerating pace of technological development and a general shift to personalized, patient-led medicine. Such relationships are increasingly mediated through particular medical technologies, drawn together by the authors as 'personal medical devices' (PMDs) - devices that are attached to, worn by, interacted with, or carried by individuals for the purposes of generating biomedical data and carrying out medical interventions on the person concerned. The burgeoning PMD field is advancing rapidly across multiple domains and disciplines - so rapidly that conceptual and empirical research and thinking around PMDs, and their clinical, social and philosophical implications, often lag behind new technical developments and medical interventions. This timely and original volume explores the significant and under-researched impact of personal medical devices on contemporary understandings of health and illness. It will be a valuable read for scholars and practitioners of medicine, health, science and technology and social science.
This book introduces approaches that have the potential to transform the daily practice of psychiatrists and psychologists. This includes the asynchronous communication between mental health care providers and clients as well as the automation of assessment and therapy. Speech and language are particularly interesting from the viewpoint of psychological assessment. For instance, depression may change the characteristics of voice in individuals and these changes can be detected by a special form of speech analysis. Computational screening methods that utilize speech and language can detect subtle changes and alert clinicians as well as individuals and caregivers. The use of online technologies in mental health, however, poses ethical problems that will occupy concerned individuals, governments and the wider public for some time. Assuming that these ethical problems can be solved, it should be possible to diagnose and treat mental health disorders online (excluding the use of medication). Speech and language are particularly interesting from the viewpoint of psychological assessment. For instance, depression may change the characteristics of voice in individuals and these changes can be detected by a special form of speech analysis. Computational screening methods that utilize speech and language can detect subtle changes and alert clinicians as well as individuals and caregivers. The use of online technologies in mental health, however, poses ethical problems that will occupy concerned individuals, governments and the wider public for some time. Assuming that these ethical problems can be solved, it should be possible to diagnose and treat mental health disorders online (excluding the use of medication). |
![]() ![]() You may like...
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,638
Discovery Miles 56 380
Drug Delivery Nanosystems for Biomedical…
Chandra P Sharma
Hardcover
Design of Nanostructures for Versatile…
Alexandru Mihai Grumezescu
Paperback
Intelligent Data Sensing and Processing…
Miguel Antonio Wister Ovando, Pablo Pancardo Garcia, …
Paperback
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,286
Discovery Miles 42 860
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,285
Discovery Miles 42 850
Implantable Sensor Systems for Medical…
Andreas Inmann, Diana Hodgins
Hardcover
R5,047
Discovery Miles 50 470
|