![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.
This book reviews and discusses the development of self-assembled nanomaterials applied in biomedical fields. Based on self-assembled nanomaterial constructions, it highlights the mechanisms of the stimuli-response-induced assembly/disassembly and transformation. Moreover, it examines healthcare-related diseases, the applications of nanomaterials and therapy/detection strategies, providing readers with both a deeper understanding of the subject and inspirations for future research. The book is primarily intended for researchers and graduate students in the fields of material sciences and chemistry who wish to learn about the principles, methods, mechanisms and biomedical applications of self-assembled nanomaterials.
This book presents a comprehensive study on a new class of branched polymers, known as hyperbranched polymers (HBPs). It discusses in detail the synthesis strategies for these particular classes of polymers as well as biocompatible and biodegradable HBPs, which are of increasing interest to polymer technologists due to their immense potential in biomedical applications. The book also describes the one-pot synthesis technique for HBPs, which is feasible for large-scale production, as well as HBPs' structure-property relationship, which makes them superior to their linear counterparts. The alterable functional groups present at the terminal ends of the branches make HBPs promising candidates in the biomedical domain, and the book specifically elaborates on the suitable characteristic properties of each of the potential biological HBPs' applications. As such, the book offers a valuable reference guide for all scientists and technologists who are interested in using these newly developed techniques to achieve faster and better treatments.
This volume presents the latest research in Virtual Reality (VR), as it is being applied in psychotherapy, rehabilitation, and the analysis of behaviour for neurological assessment. This book will be of value to anyone already in the field and to those who are interested in the development of VR systems for therapeutic purposes. The contents include: * The latest literature reviews on VR in psychotherapy, psychological wellbeing, and rehabilitation * VR and cognitive behavior therapy * Increasing presence in VR for effective exposure therapy and treatment of anxiety disorders * VR military training for managing combat stress and preventing post traumatic stress * VR, mixed reality systems, and games for stroke rehabilitation * VR systems for improving vision in children with amblyopia * Therapeutic play in virtual environments * Healing potential of online virtual worlds such as Second Life * Neuropsychological assessment using virtual environments * Detailed accounts on how VR systems are designed, implemented, and best evaluated * Discussions of limitations, problems, and ethical concerns using VR in mental and physical therapy
This book presents authoritative recent research on Biomedical Informatics, bringing together contributions from some of the most respected researchers in this field. Biomedical Informatics represents a growing area of interest and innovation in the management of health-related data, and is essential to the development of focused computational models. Outlining the direction of current research, the book will be of considerable interest to theoreticians and application scientists alike. Further, as all chapters are self-contained, it also provides a valuable sourcebook for graduate students.
This book offers a comprehensive report on the technological aspects of Mobile Health (mHealth) and discusses the main challenges and future directions in the field. It is divided into eight parts: (1) preventive and curative medicine; (2) remote health monitoring; (3) interoperability; (4) framework, architecture, and software/hardware systems; (5) cloud applications; (6) radio technologies and applications; (7) communication networks and systems; and (8) security and privacy mechanisms. The first two parts cover sensor-based and bedside systems for remotely monitoring patients' health condition, which aim at preventing the development of health problems and managing the prognosis of acute and chronic diseases. The related chapters discuss how new sensing and wireless technologies can offer accurate and cost-effective means for monitoring and evaluating behavior of individuals with dementia and psychiatric disorders, such as wandering behavior and sleep impairments. The following two parts focus on architectures and higher level systems, and on the challenges associated with their interoperability and scalability, two important aspects that stand in the way of the widespread deployment of mHealth systems. The remaining parts focus on telecommunication support systems for mHealth, including radio technologies, communication and cloud networks, and secure health-related applications and systems. All in all, the book offers a snapshot of the state-of-art in mHealth systems, and addresses the needs of a multidisciplinary audience, including engineers, computer scientists, healthcare providers, and medical professionals, working in both academia and the industry, as well as stakeholders at government agencies and non-profit organizations.
This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions.
"The Imperial Quest and Modern Memory" explores relationships between narrative and imperium in the context of Western Modernism by examining the Quest as a vexed trope in "Heart of Darkness," "Passage to India," "The Sheltering Sky," and "The Quiet American," The book takes stock of twentieth century theory regarding the Quest--as archetype, trope, and construct, considers the dominant expression and the imperial organization of this trope in Western culture and iconography from the Dark Ages to the Age of Empire, explores the ways in which this trope both lingers and changes in the context of Western Modernism, and finally gauges its permutations in Modern discourse. "The Imperial Quest and Modern Memory's" central claim is that the Modern novel simultaneously reinscribes and subverts Western and imperial manifestations of the Quest. "Heart" "of Darkness," "Passage to India," "The Sheltering Sky," and "The Quiet American "are remarkably Modern and subversive narratives. They participate in the revolutionary projects of early and high Modernism and are often in marked opposition to imperial praxis. Yet they are also profoundly influenced by the deep ideological and metaphoric structures of Western culture. Thus, the Quest trope--specifically in its Western and imperial manifestations--lingers in Modern Memory and certainly in the Modern novel. This expansive study emphasizes intriguing intersections between past and present, culture and archetype, norm and narrative, memory and contemporaneity.
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models on tumor and cancer development, quantum modeling of bird navigation compass, quantum aspects of photosynthesis, quantum biological error correction.
Ambulation Analysis in Wearable ECG Subhasis Chaudhuri, Tanmay Pawar, Siddhartha Duttagupta Ambulation Analysis in Wearable ECG demonstrates why, due to recent developments, the wearable ECG recorder substantiates a significant innovation in the healthcare field. About this book:
Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized, with increasing trials performed in a biomedical setting. As a result, advanced digital image processing algorithms are needed to assist screening, diagnosis, and treatment. "Pattern Recognition and Tomographic Reconstruction" presents these necessary algorithms, which will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terhazertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries, and would be useful to both in vivo and ex vivo environments, making this book a must-read for anyone in the field of biomedical engineering and digital imaging.
The current generation of imaging nanoparticles is diverse and dependent on its myriad of applications. This book provides an overview of how these imaging particles can be designed to fulfill specific requirements for applications across different imaging modalities. It presents, for the first time, a comprehensive interdisciplinary overview of the impact nanoparticles have on biomedical imaging and is a common central resource for researchers and teachers.
Nanorobots can be defined as intelligent systems with overall dimensions at or below the micrometer range that are made of assemblies of nanoscale components with individual dimensions ranging between 1 to 100 nm. These devices can now perform a wide variety of tasks at the nanoscale in a wide variety of fields including but not limited to fields such as manufacturing, medicine, supply chain, biology, and aerospace. Nanorobotics: Current Approaches and Techniques offers a comprehensive overview of this emerging interdisciplinary field with a wide ranging discussion that includes nano-manipulation and industrial nanorobotics, nanorobotic manipulation in biology and medicine, nanorobotic sensing, navigation and swarm behavior and CNT, and protein and DNA-based nanorobotics.
Today, over 500,000 medical technologies are available in hospitals, homes, and community care settings. They range from simple bandages to complex, multi-part body scanners that cost millions of dollars to develop. Yet a typical technology has a lifecycle of just 21 months before an improved product usurps it-the healthcare ecosystem is rapidly advancing and driven by a constant flow of innovation. And those innovations need innovators. With $21 billion made available for investment in the digital healthcare industry in 2020 (a 20x increase on 2010), entrepreneurs, investors, and related actors are entering the healthcare ecosystem in greater numbers than ever before. Last year alone, over 17,000 medical technology patents were filed, the third highest of all patent types. Each of those has a dedicated team of entrepreneurs behind it. Yet with increasingly strict regulations and pharmaceutical giants growing more aggressive, many thousands of entrepreneurs fail before even the patent stage: just 2% secure revenue or adoption. Healthtech Innovation: How Entrepreneurs Can Define and Build the Value of Their New Products is a down-to-earth survival guide for entrepreneurs struggling to secure a strategic position within the healthtech ecosystem. Which is expected that by 2026, the global digital health market size will be around $657 billion. This book is designed to help innovators navigate this complex and newly volatile landscape. It covers business strategy, marketing, funding acquisition, and operation in a global regulatory context. It is written in simple language, evidenced by the latest academic and industry research, and explained using real-world examples and case studies.
Explains models from natural flash systems Discusses theoretical considerations of flash systems Presents approaches and procedures for designing synthetic flash systems Explores methods for preparing flash systems for specific applications The design of environment-sensitive devices for biomedical and pharmaceutical applications has improved significantly due to recent advances in smart polymer and hydrogel technology. Despite their capacity to carry out functions that previously were unobtainable, smart polymers and hydrogels tend to have painfully slow response times. On the other hand biological systems go through phase changes at an extremely fast rate. This book examines the natural systems that respond almost instantaneously to environmental stimuli, and thus gives the reader an understanding of the mechanisms that govern these responses. The book includes chapters on how to go about designing a synthetic "flash" system based on the naturally occurring systems. It also deals with potential applications of flash systems in biomedical and pharmaceutical areas.
This book highlights the latest advances in the application of artificial intelligence to healthcare and medicine. It gathers selected papers presented at the 2019 Health Intelligence workshop, which was jointly held with the Association for the Advancement of Artificial Intelligence (AAAI) annual conference, and presents an overview of the central issues, challenges, and potential opportunities in the field, along with new research results. By addressing a wide range of practical applications, the book makes the emerging topics of digital health and precision medicine accessible to a broad readership. Further, it offers an essential source of information for scientists, researchers, students, industry professionals, national and international public health agencies, and NGOs interested in the theory and practice of digital and precision medicine and health, with an emphasis on risk factors in connection with disease prevention, diagnosis, and intervention.
Hardly any phenomenon in the modern environment is as ubiquitous as electromagnetic fields and waves. We have learned to understand the physical characteristics of these energy forms, and we have applied them in abundant ways to embellish our ways of life and our standards of living. Furthermore, we have come to depend on them for health, safety, information, comfOli, and conveyance. Apart from their intended roles, these electromagnetic fields and waves produce other effects which may influence the activities of living organisms. The effects produced depend on many physical, chemical, and biological factors. They may be grossly apparent and visible soon after exposure of the living organism or they may not appear to have influenced the organism at all upon casual examination. Even then, there may be subtle changes which are only detectable upon careful chemical or microscopic study, or which are apparent only after a considerable time delay. Nevertheless, our understanding of the interaction of electromagnetic fields with living systems is advancing in a wide range of topical areas. This bi-annual series with invited reviews by recognized leaders in their respective specialties, will present progress to date in key areas of research and scholarship. The guiding philosophy of this undertaking is the presentation of integrated, known, and confilmed phenomenological observations, basic mechanism of interactions, and applications in biology and medicine, as well as perspectives on current topics of interest.
Achieving good clinical outcomes with implanted biomaterials depends upon achieving optimal function, both mechanical and biological, which in turn depends upon integrating advances realized in biological science, material science, and tissue engineering. As these advances push back the frontiers of biomaterial medicine , the control and patterning of bio-implant interface reactions will have a tremendous impact on future design and prospects of implant treatments.
This updated fourth edition provides current information on devices and is divided into diagnostic and treatment sections. Devices are described with the theory of operation and relevant anatomical and physiological considerations. Aspects of BMET work including test equipment, standards, and information technology are also discussed. The text covers a wide variety of diagnostic and treatment devices currently used in hospitals that students will likely encounter in their career. Principles of operation and examples of use are provided. This book is unique in that it is written by an experienced biomed tech with 30 years' experience in hospitals rather than by engineers with little frontline experience. It is also unique in that it provides ancillary materials on the web and is the only guide divided into diagnostic and treatment device sections. This new edition also includes two new chapters on computers, information technology, and networking as well as health technology management. From the previous edition: "The book presents a comfortable balance between clinical applications, basic technical information, and various pictures of medical technologies one will encounter in the field. Additionally, related anatomy and physiology principles and essential technical terms are a nice complement to the technologies presented. The everyday duties and responsibilities of a biomed are captured by the various 'true-to-life' scenarios introduced throughout the book." -Joey Jones, Madisonville Community College, Kentucky, USA This book is intended for students in biomedical engineering technology and healthcare technology management (BMET/HTM) programs as well as biomedical engineering students. Field service representatives, medical device designers, and medical device sales representatives will also find it useful.
This book reviews the most recent developments in the field of osteochondral tissue engineering (OCTE) and presents challenges and strategies being developed that face not only bone and cartilage regeneration, but also establish osteochondral interface formation in order to translate it into a clinical setting. Topics include nanotechnology approaches and biomaterials advances in osteochondral engineering, advanced processing methodology, as well as scaffolding and surface engineering strategies in OCTE. Hydrogel systems for osteochondral applications are also detailed thoroughly. Osteochondral Tissue Engineering: Nanotechnology, Scaffolding-Related Developments and Translation is an ideal book for biomedical engineering students and a wide range of established researchers and professionals working in the orthopedic field.
Mechatronics is a synergic discipline integrating precise mechanics, electrotechnics, electronics and IT technologies. The main goal of mechatronical approach to design of complex products is to achieve new quality of their utility value at reasonable price. Successful accomplishment of this task would not be possible without application of advanced software and hardware tools for simulation of design, technologies and production control and also for simulation of behavior of these products in order to provide the highest possible level of spatial and functional integration of the final product. This book brings a review of the current state of the art in mechatronics, as presented at the 8th International Conference Mechatronics 2009, organized by the Brno Technical University, Faculty of Mechanical Engineering, Czech Republic. The specific topics of the conference are Modelling and Simulation, Metrology & Diagnostics, Sensorics & Photonics, Control & Robotics, MEMS Design & Mechatronic Products, Production Machines and Biomechanics. The selected contributions provide an insight into the current development of these scientific disciplines, present the new results of research and development and indicate the trends of development in the interdisciplinary field of mechatronic systems. Therefore, the book provides the latest and helpful information both for the R&D specialists and for the designers working in mechatronics and related fields.
There is a tremendous interest among researchers for the development of virtual, augmented reality and games technologies due to their widespread applications in medicine and healthcare. To date the major applications of these technologies include medical simulation, telemedicine, medical and healthcare training, pain control, visualisation aid for surgery, rehabilitation in cases such as stroke, phobia and trauma therapies. Many recent studies have identified the benefits of using Virtual Reality, Augmented Reality or serious games in a variety of medical applications. This research volume on "Virtual, Augmented Reality and Serious Games for Healthcare 1" offers an insightful introduction to the theories, development and applications of virtual, augmented reality and digital games technologies in medical and clinical settings and healthcare in general. It is divided into six sections: section one presents a selection of applications in medical education and healthcare management; Section two relates to the nursing training, health literacy and healthy behaviour; Section three presents the applications of Virtual Reality in neuropsychology; Section four includes a number of applications in motor rehabilitation; Section five aimed at therapeutic games for various diseases; and the final section presents the applications of Virtual Reality in healing and restoration. This book is directed to the healthcare professionals, scientists, researchers, professors and the students who wish to explore the applications of virtual, augmented reality and serious games in healthcare further.
This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.
"Orthotics: A Comprehensive Clinical Approach" is an innovative and comprehensive new text that provides essential information about contemporary orthoses to guide the student and clinician in prescribing and utilizing these appliances in neuromuscular, musculoskeletal, and integumentary rehabilitation. Written by recognized authorities in the field, Joan Edelstein, MA, PT, FISPO and Jan Bruckner, PhD, PT, this is a prime resource for practitioners and clinicians. Individual chapters cover orthoses for the foot, ankle, knee, hip, trunk, neck, shoulder, elbow, wrist, and hand. Orthoses for patients with paraplegia, burns, and soft tissue contractures are detailed and illustrated. Prescription guidelines, evaluation techniques, goal setting, and training procedures are presented. Each chapter has interesting "thought" questions and case studies to promote clinical reasoning and problem-solving skills. A unique feature of this text is the inclusion of a point-counterpoint discussion to demonstrate how clinicians can manage the same patient in different ways. This approach inspires broader thinking about clinical management.
Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters will develop the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to independently explore the ideas presented.Volume 5: Modern Tools of BiophysicsEditor: Thomas Jue, PhDIn Modern Tools of Biophysics, a group of prominent professors have provided insights into the tools used in biophysics with respect to the following topics: Wave Theory of Image Formation in a Microscope: Basic Theory and Experiments Computer Simulations and Nonlinear Dynamics of Cardiac Action Potentials Myoglobin and Hemoglobin Contribution to the NIRS Signal in Muscle Anomalous Low Angle X-Ray Scattering of Membrane with Lanthanides Recording of Ionic Currents under Physiological Conditions-Action Potential-Clamping and "Onion-Peeling" Techniques Patch Clamp Technique and Applications About the EditorThomas Jue is a Professor in the Department of Biochemistry and Molecular Medicine at the University of California, Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo and has published extensively in the field of magnetic resonance spectroscopy and imaging, near-infrared spectroscopy, bioenergetics, cardiovascular regulation, exercise, and marine biology. He served as a Chair of the Biophysics Graduate Group Program at UC Davis, where he started to develop scholarly approaches to educate graduate students with a balance of physical-science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. He continues to develop the biophysics curriculum, and the Handbook of Modern Biophysics represents an aspect of that effort. |
You may like...
Microfluidic Devices for Biomedical…
Xiujun (James) Li, Yu Zhou
Hardcover
R5,596
Discovery Miles 55 960
Surface Modification of Magnesium and…
T S N Sankara Narayanan, Il-Song Park, …
Hardcover
R4,394
Discovery Miles 43 940
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Advanced Dental Biomaterials
Zohaib Khurshid, Shariq Najeeb, …
Paperback
R5,579
Discovery Miles 55 790
Biomaterials and Regenerative Medicine…
T V Chirila, Damien Harkin
Hardcover
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Intelligent Data Sensing and Processing…
Miguel Antonio Wister Ovando, Pablo Pancardo Garcia, …
Paperback
|