![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Nursing & ancillary services > Biomedical engineering
The book presents a new, powerful model of neuronal networks, consisting of a three-dimensional neuronal culture in which 3D neuronal networks are coupled to micro-electrode-arrays (MEAs). It discusses the main advantages of the three-dimensional system compared to its two-dimensional counterpart, and shows that the network dynamics, recorded during both spontaneous and stimulated activity, differs between the two models, with the 3D system being better able to emulate the in vivo behaviour of neural networks. The book offers an extensive analysis of the system, from the theoretical background, to its design and applications in neuro-pharmacological studies. Moreover, it includes a concise yet comprehensive introduction to both 2D and 3D neuronal networks coupled to MEAs, and discusses the advantages, limitations and challenges of their applications as cellular and tissue-like in vitro experimental model systems.
Nanopores are nanometer scale holes formed naturally by proteins or cells, and can be used for a variety of applications, including sequencing DNA and detecting anthrax. They can be integrated into artificially constructed encapsulated cells of silicon wafers while allowing small molecules like oxygen, glucose and insulin to pass, while keeping out large system molecules. "Nanopores: Sensing and Fundamental Biological Interactions" examines the emerging research directions surrounding nanopores such as genome sequencing and early disease detection using biomarker identification. Covering the applications of nanopores in genetics, proteomics, drug discovery, early disease detection and detection of emerging environmental threats, it is a must-have book for biomedicalengineersand research scientists."
Over the past ten years, a number of cytokines and growth factors have proven to be as effective therapeutics. While these products have certainly established recombinant biologics as a major pharmaceutical growth sector, the continued interest in this class of drugs arises from the fact that today we have a far better understanding of the human immune response, both at a cellular and molecular level. This has resulted in a more methodical characterisation of these factors which has given clinical researchers an opportunity to plan Phase 1 clinical trials that can provide substantial information on the activity of the cytokine in humans. Currently, a great deal of effort is also being channelled into identifying cytokines from the various DNA databases. Our major objective for this book is to profile cytokines that have been recently identified. The therapeutic potential of these cytokines based on their known properties will be discussed by the authors. The main aim of this book is to provide...
Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials. Biomedical Nanotechnology: Methods and Protocols brings together experts from a wide variety of fields to provide a practical overview of biomedical nanotechnology, from the conception of novel materials in the laboratory to the application of such structures in the clinic. After a brief introductory chapter, the first section consists of protocol chapters which provide hands-on information on the synthesis of a variety of solution-phase and surface-bound nanomaterials and their application in sensing, imaging, and/or therapeutics, while the second section consists of a series of case studies and review chapters that discuss the toxicology of nanomaterials, the regulatory pathways to US Food and Drug Administration (FDA) approval of these materials, their patenting, marketing, and commercialization, and the legal and ethical issues surrounding their use. Written in the highly successful Methods in Molecular Biology (TM) series format, many chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and insightful tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Biomedical Nanotechnology: Methods and Protocols surveys this exciting field from the most vital angles in order to provide a comprehensive reference for scientists and researchers of all different backgrounds looking to utilize the numerous versatile applications of nanomaterial technologies.
This special issue of the Advances in Experimental Medicine and Biology presents much of the research described at the recent 2nd International Tissue Engineering Conference held in Crete in May 2005. The conference brought together over 150 researchers from around the world to examine the emerging and most advanced aspects of their particular field. The chapters reflect a diverse group of authors, including both clinicians and academicians.
Contemporary approaches to the synthesis of chemically modified biomacromolecules (proteins, nucleic acids, lipids, and carbohydrates) not only require efficient means to control conjugation and the specific site of attachment of the conjugated moiety but also the effective use of recent developments in the fields of pharmaceutical chemistry, biomolecular/polymer engineering, and nanobiotechnology. In this second edition of "Bioconjugation Protocols: Strategies and Methods," expert researchers update the classic methods and introduce valuable new approaches that go beyond basic conjugation techniques to include elements from advanced organic synthesis, molecular biology, surface biotechnology, materials science, and nanobioscience/engineering. These readily reproducible methods cover the preparation of biomolecular conjugates using a variety of labeling techniques and semisynthetic approaches. Additional chapters address the biofunctionalization of surface structures, including organic/inorganic thin films, as well as various types of nanostructures (magnetic nanoparticles, quantum dots, carbon nanotubes, and silicon nanowire devices). All the protocols follow the successful "Methods in Molecular Biology"TM series format, each one offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and highly practical, "Bioconjugation Protocols: Strategies and Methods, Second Edition" offers both novice and experienced researchers access to the broad array of techniques needed to carry out the semisynthesis of functional biomolecular reagents and/or the biofunctionalization of surfaces and structures of unique interest for a wide variety of applications, ranging from novel biomedical diagnostics to powerful new therapeutics to advanced biomaterials."
Swamy Laxminarayan was an outstanding researcher active in many diverse fields of science and technology. This liber amicorum in memory of Swamy Laxminarayan collects Medical and Biological Engineering and Informatics contributions to the Safety and Security of Individuals and Society. The authors are renowned scientists and the aim of their writing is to recall the enormous personal and scientific achievement of Swamy Laxminarayan.
Focusing on synthetic nanodevices and the synthesis of nanomaterials, this book examines polymeric microspheres and nanostructures, carbon nanotubes, silicon, silicon dioxide, and iron oxide. There is also a chapter on the characterization of critical nanostructures for biological applications.
This text focuses on various factors associated with orphan diseases and the influence and role of health information technologies. Orphan diseases have not been adopted by the pharmaceutical industry because they provide little financial incentive to treat or prevent it. It is estimated that 6,000-7,000 orphan diseases exist today; as medical knowledge continues to expand, this number is likely to become much greater. The book highlights the opportunities and challenges in this increasingly important area. The book explores new avenues which are opened by information technologies and Health 2.0, and highlights also economic opportunities of orphan disease medicine. The editors of this new book have international experience and competencies in the key areas of patient empowerment, healthcare and clinical knowledge management, healthcare inequalities and disparities, rare diseases and patient advocacy.
This book provides a multidisciplinary overview of the design and implementation of systems for remote patient monitoring and healthcare. Readers are guided step-by-step through the components of such a system and shown how they could be integrated in a coherent framework for deployment in practice. The authors explain planning from subsystem design to complete integration and deployment, given particular application constraints. Readers will benefit from descriptions of the clinical requirements underpinning the entire application scenario, physiological parameter sensing techniques, information processing approaches and overall, application dependent system integration. Each chapter ends with a discussion of practical design challenges and two case studies are included to provide practical examples and design methods for two remote healthcare systems with different needs.
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.
This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engineering of three-dimensional human tissue constructs, cell-cell interaction must be controlled in three dimensions, but typical biological cell manipulation technique cannot accomplish this task. An engineered cell manipulation technique is necessary. In this book the authors describe the fabrication of nanofilms onto cell surfaces, development of three-dimensional cellular multilayers, and various applications of the cellular multilayers as three-dimensional human models. This important work will be highly informative for researchers and students in the fields of materials science, polymer science, biomaterials, medicinal science, nanotechnology, biotechnology, and biology.
The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications. The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, such as those related with Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioengineering, Mathematics, Physics, Medical Imaging and Medicine.
Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.
This book tackles the recent research directions in using the newly emerged technologies during the era of COVID-19 pandemic. It mainly focuses on using emerging technologies and their impact on health care, education, and society. It also provides insights into the current challenges and constraints in using technologies during the era of COVID-19 pandemic and exposes new opportunities for future research in the domain.
This book provides a comprehensive overview of the cascade of events activated in the body following the implant of biomaterials and devices. It is one of the first books to shed light on the role of the host immune response on therapeutic efficacy, and reviews the state-of-the-art for both basic science and medical applications. The text examines advantages and disadvantages of the use of synthetic versus natural biomaterials. Particular emphasis is placed on the role of biomimicry in the development of smart strategies able to modulate infiltrating immune cells, thus reducing side effects (such as acute and chronic inflammation, fibrosis and/or implant rejection) and improving the therapeutic outcome (healing, tissue restoration). Current cutting-edge approaches in tissue engineering, regenerative medicine, and nanomedicine offer the latest insights into the role immunomodulation in improving tolerance during tissue transplant in the treatment of orthopaedic, pancreatic, and hepatic diseases. "Immune Response to Implanted Materials and Devices" is intended for an audience of graduate students and professional researchers in both academia and industry interested in the development of smart strategies, which are able to exploit the self-healing properties of the body and achieve functional tissue restoration.
The objective of this book is to provide up-to-date coverage of some of the emerging developments in the field of integrated DNA biochips. It will prove a useful source of information for researchers in the field and for those who are just entering the field of biochip research.
This book presents research advances in the theory of medical physics and its application in various sectors of biomedical engineering. It gathers best selected research papers presented at International Conference on Advances in Medical Physics and Healthcare Engineering (AMPHE 2020), organized by the Department of Physics (in collaboration with the School of Engineering and Technology) Adamas University, Kolkata, India. The theme of the book is interdisciplinary in nature; it interests students, researchers and faculty members from biomedical engineering, biotechnology, medical physics, life sciences, material science and also from electrical, electronics and mechanical engineering backgrounds nurturing applications in biomedical domain.
Investigating Biological Systems Using Modeling describes how to
apply software to analyze and interpret data from biological
systems. It is written for students and investigators in lay
person's terms, and will be a useful reference book and textbook on
mathematical modeling in the design and interpretation of kinetic
studies of biological systems. It describes the mathematical
techniques of modeling and kinetic theory, and focuses on practical
examples of analyzing data. The book also uses examples from the
fields of physiology, biochemistry, nutrition, agriculture,
pharmacology, and medicine.
The book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, and discusses important regulatory challenges, as well as clinical and ethical issues. Based on the 2nd International Symposium on Wearable Robotics, WeRob2016, held October 18-21, 2016, in Segovia, Spain, the book addresses a large audience of academics and professionals working in government, industry, and medical centers, and end-users alike. It provides them with specialized information and with a source of inspiration for new ideas and collaborations. It discusses exemplary case studies highlighting practical challenges related to the implementation of wearable robots in a number of fields. One of the focus is on clinical applications, which was encouraged by the colocation of WeRob2016 with the International Conference on Neurorehabilitation, INCR2016. Additional topics include space applications and assistive technologies in the industry. The book merges together the engineering, medical, ethical and political perspectives, thus offering a multidisciplinary, timely snapshot of the field of wearable technologies.
Responding to the growing demand for minimally invasive procedures, this book provides a comprehensive overview of the current technological advances in image-guided surgery. It blends the expertise of both engineers and physicians, offering the latest findings and applications. Detailed color images guide readers through the latest techniques, including cranial, orthopedic, prostrate, and endovascular interventions.
This book investigates the microstructural and mechanical properties of titanium-tantalum (TiTa) alloy formed using selective laser melting (SLM). TiTa has potential orthopaedic biomedical applications thanks to its high strength to modulus ratio. However, because it is difficult to obtain, it is still not widely used. The book describes how SLM is utilized to form this alloy, and provides a better understanding of the SLM process in porous lattice structure fabrication and its control through statistical modelling.
Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach. The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.
This book offers an overview of some recent advances in the Computational Bioacoustics methods and technology. In the focus of discussion is the pursuit of scalability, which would facilitate real-world applications of different scope and purpose, such as wildlife monitoring, biodiversity assessment, pest population control, and monitoring the spread of disease transmitting mosquitoes. The various tasks of Computational Bioacoustics are described and a wide range of audio parameterization and recognition tasks related to the automated recognition of species and sound events is discussed. Many of the Computational Bioacoustics methods were originally developed for the needs of speech, audio, or image processing, and afterwards were adapted to the requirements of automated acoustic recognition of species, or were elaborated further to address the challenges of real-world operation in 24/7 mode. The interested reader is encouraged to follow the numerous references and links to web resources for further information and insights. This book is addressed to Software Engineers, IT experts, Computer Science researchers, Bioacousticians, and other practitioners concerned with the creation of new tools and services, aimed at enhancing the technological support to Computational Bioacoustics applications. STTM, Speech Technology and Text Mining in Medicine and Health Care This series demonstrates how the latest advances in speech technology and text mining positively affect patient healthcare and, in a much broader sense, public health at large. New developments in text mining methods have allowed health care providers to monitor a large population of patients at any time and from any location. Employing advanced summarization techniques, patient data can be readily extracted from extensive clinical documents in electronic health records and immediately made available to the physician. These same summarization techniques can also aid the healthcare provider in extracting from the large corpora of medical literature the relevant information for treating the patient. The series topics include the design and acceptance of speech-enabled robots that assist in the operating room, studies of signal processing and acoustic modeling for speech and communication disorders, advanced statistical speech enhancement methods for creating synthetic voice, and technologies for addressing speech and language impairments. Titles in the Series consist of both authored books and edited contributions. All authored books and contributed works are peer-reviewed. The Series is for speech scientists and speech engineers, machine learning experts, biomedical engineers, medical speech pathologists, linguists, and healthcare professionals
This book explores computational fluid dynamics in the context of the human nose, allowing readers to gain a better understanding of its anatomy and physiology and integrates recent advances in clinical rhinology, otolaryngology and respiratory physiology research. It focuses on advanced research topics, such as virtual surgery, AI-assisted clinical applications and therapy, as well as the latest computational modeling techniques, controversies, challenges and future directions in simulation using CFD software. Presenting perspectives and insights from computational experts and clinical specialists (ENT) combined with technical details of the computational modeling techniques from engineers, this unique reference book will give direction to and inspire future research in this emerging field. |
![]() ![]() You may like...
Drug Delivery Nanosystems for Biomedical…
Chandra P Sharma
Hardcover
Intelligent Data Sensing and Processing…
Miguel Antonio Wister Ovando, Pablo Pancardo Garcia, …
Paperback
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,268
Discovery Miles 22 680
Design of Nanostructures for Versatile…
Alexandru Mihai Grumezescu
Paperback
Implantable Sensor Systems for Medical…
Andreas Inmann, Diana Hodgins
Hardcover
R4,927
Discovery Miles 49 270
|