![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering
The book presents the proceedings of four conferences: The 24th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'20), The 6th International Conference on Health Informatics and Medical Systems (HIMS'20), The 21st International Conference on Bioinformatics & Computational Biology (BIOCOMP'20), and The 6th International Conference on Biomedical Engineering and Sciences (BIOENG'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020, and are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the tracks on Image Processing, Computer Vision, & Pattern Recognition, Health Informatics & Medical Systems, Bioinformatics, Computational Biology & Biomedical Engineering; Features papers from IPCV'20, HIMS'20, BIOCOMP'20, and BIOENG'20.
Covers different technologies like AI, IoT and Signal Processing in the context of biomedical applications Reviews medical image analysis, disease detection, and prediction Comprehends the advantage of recent technologies for medical record keeping through electronics health records (EHRs) Presents state of art research in the field of biomedical engineering using various physiological signals Explores different Bio Sensors used in Healthcare Applications using IoT
The rise in living standards increases the expectation of people in almost every field. At the forefront is health. Over the past few centuries, there have been major developments in healthcare. Medical device technology and developments in artificial intelligence (AI) are among the most important ones. The improving technology and our ability to harness the technology effectively by means such as AI have led to unprecedented advances, resulting in early diagnosis of diseases. AI algorithms enable the fast and early evaluation of images from medical devices to maximize the benefits. While developments in the field of AI were quickly adapted to the field of health, in some cases this contributed to the formation of innovative artificial intelligence algorithms. Today, the most effective artificial intelligence method is accepted as deep learning. Convolutional neural network (CNN) architectures are deep learning algorithms used for image processing. This book contains applications of CNN methods. The content is quite extensive, including the application of different CNN methods to various medical image processing problems. Readers will be able to analyze the effects of CNN methods presented in the book in medical applications.
This book will give insight into emerging semiconductor devices from their applications in electronic circuits, which are the backbone of electronic equipment. It provides desired exposure to the ever-growing field of low-power electronic devices and their applications in nanoscale devices, memory design, and biosensing applications. Tunneling Field Effect Transistors: Design, Modeling, and Applications bring researchers and engineers from various disciplines of the VLSI domain together to tackle the emerging challenges in the field of nanoelectronics and applications of advanced low-power devices. The book begins by discussing the challenges of conventional CMOS technology from the perspective of low-power applications. The book also reviews the basic science and developments of subthreshold swing technology and recent advancements in the field. The authors discuss the impact of semiconductor materials and architecture designs on TFET devices and the performance and usage of FET devices in various domains like nanoelectronics, Memory Devices, and biosensing applications. The authors also cover a variety of FET devices, such as MOSFETs and TFETs, with various structures based on the tunneling transport phenomenon. The contents of the book have been designed and arranged in such a way that Electrical Engineering students, researchers in the field of nanodevices and device-circuit codesign, as well as industry professionals working in the domain of semiconductor devices, will find the material useful and easy to follow.
Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture gives a systematic and almost selfcontained description of the many facets of advanced design, optimization, modeling, system identification and advanced control techniques for positioning of cell puncture mechanism with piezoelectric actuator in micro/nanorobotics systems. To achieve biomedical applications, reliability design, modeling, and precision control are vitally important for developing engineering systems. With the advances in mechanical design, dynamic modeling, system identification, and control techniques, exploiting them for the benefit of reliability design, precision control, and quick actuation of micro/nanomanipulation systems to expand the robot's applications at the micro and nanoscales, especially for biomedical applications. This book unifies existing and emerging techniques concerning advanced design, modeling and advanced control methodologies in micropuncture of biological cells using piezoelectric actuator with their practical biomedical applications. The book is an essential resource for researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts. KEY FEATURES * Provides a series of latest results in, including but not limited to, design, modeling, and control of micro/nanomanipulation systems utilizing piezoelectric actuator * Gives recent advances of theory, technological aspects, and applications of advanced modeling, control, and actuation methodologies in cell engineering applications * Presents simulation and experimental results to reflect the micro/nano manipulation practice, and also validate the performances of the developed design, analysis, and synthesis approaches
Mineralized Collagen Bone Graft Substitutes presents a comprehensive study of biomimetic mineralized collagen, synthesized in vitro, a next generation biomaterial for bone regeneration. By focusing both on fundamental research and the clinical use of this novel material, the book provides a complete examination, from bench to bedside. Chapters discuss natural bone and familiar biomaterials for bone repair, the preparation and safety of mineralized collagen, products made of mineralized collagen, and present clinical case studies. This book is an invaluable and unique resource for researchers, clinicians, students and industrialists in the area of orthopedics and dentistry.
Statistics for Biomedical Engineers and Scientists: How to Analyze and Visualize Data provides an intuitive understanding of the concepts of basic statistics, with a focus on solving biomedical problems. Readers will learn how to understand the fundamental concepts of descriptive and inferential statistics, analyze data and choose an appropriate hypothesis test to answer a given question, compute numerical statistical measures and perform hypothesis tests 'by hand', and visualize data and perform statistical analysis using MATLAB. Practical activities and exercises are provided, making this an ideal resource for students in biomedical engineering and the biomedical sciences who are in a course on basic statistics.
This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19.
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2017 ApplePies Conference, held in Rome, Italy in September 2017, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
This book offers a much-needed discussion on the targeting of biofilm-related infections. Chapters include discussions on the impact of biofilm on medical implants, industrial applications, as well as wound and tissue infections. It also offers discussions on regulatory management for industrial sectors and medical environments. Given that there continues to be a paucity of effective antimicrobial products, devices, and coatings in clinical and industrial use that effectively reduce rates of infection or biofilm-related problems, Targeting Biofilms in Translational Research, Device Development, and Industrial Sectors, offers a fresh and much-needed perspective aimed at helping create healthier controlled environments and safer devices. This comprehensive book is indispensable for industrial and academic translational researchers, device developers, and regulatory experts looking to create more effective antimicrobial products.
Basic Biostatistics for Medical and Biomedical Practitioners, Second Edition makes it easier to plan experiments, with an emphasis on sample size. It also shows what choices are available when simple tests are unsuitable and offers investigators an overview of how the kinds of complex tests that they won't do on their own work. The second edition presents a new, revised and enhanced version of the chapters, taking into consideration new developments and tools available, discussing topics, such as the basic aspects of statistics, continuous distributions, hypothesis testing, discrete distributions, probability in epidemiology and medical diagnosis, comparing means, regression and correlation. This book is a valuable source for students and researchers looking to expand or refresh their understanding of statistics as it applies to the biomedical and research fields. Based on the author's 40+ years of teaching statistics to medical fellows and biomedical researchers across a wide range of fields, it is a valuable source for researchers who need to understand more about biostatistics to apply it to their work.
Foundations of Biomaterials Engineering provides readers with an introduction to biomaterials engineering. With a strong focus on the essentials of materials science, the book also examines the physiological mechanisms of defense and repair, tissue engineering and the basics of biotechnology. An introductory section covers materials, their properties, processing and engineering methods. The second section, dedicated to Biomaterials and Biocompatibility, deals with issues related to the use and application of the various classes of materials in the biomedical field, particularly within the human body, the mechanisms underlying the physiological processes of defense and repair, and the phenomenology of the interaction between the biological environment and biomaterials. The last part of the book addresses two areas of growing importance: Tissue Engineering and Biotechnology. This book is a valuable resource for researchers, students and all those looking for a comprehensive and concise introduction to biomaterials engineering.
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies.
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors, actuators, micro- and nano-structured materials, mechanisms of interaction and signal transduction, polymers and biomaterials, sensor electronics and instrumentation, analytical microsystems, recognition systems and signal analysis and sensor networks as well as manufacturing technologies, environmental, food, energy and biomedical applications. The book gathers a selection of papers presented at the AISEM Regional Workshop on Sensors and Microsystems, held in Portici (Naples), Italy in February 2020.
This book offers a comprehensive and timely overview of the latest developments in the field of biomechanics and extensive knowledge of tissue structure, function, and modeling. Gathering chapters written by authoritative scientists, it reports on a range of continuum and computational models of solids, and related experimental works, for biomechanical applications. It discusses cutting-edge advances such as constitutive modeling and computational simulation of biological tissues and organs under physiological and pathological conditions, and their mechanical characterization. It covers innovative studies on arteries, heart, valvular tissue, and thrombus, brain tumor, muscle, liver, kidney, and stomach, among others. Written in honor of Professor Gerhard A. Holzapfel, the book provides specialized readers with a thorough and timely overview of different types of modeling in biomechanics, and current knowledge about biological structures and function.
Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials.
An Introduction to Green Nanotechnology, Volume 28, provides students, scientists and chemical engineers with an overview of several types of nanostructures, discusses the synthesis and characterization of nanostructures, and provides applications of nanotechnology in daily life. The book offers a foundation to green nanotechnology by explaining why green nanotechnology is important. Covers biological sources in green nanotechnology, antioxidants, green nanostructures, mechanism, synthesis and characterization. The book ends with an evaluation of the risks of nanotechnology in human life and future perspectives.
Modeling and Control of Infectious Diseases in the Host: With MATLAB and R provides a holistic understanding of health and disease by presenting topics on quantitative decision-making that influence the development of drugs. The book presents modeling advances in different viral infections, dissecting detailed contributions of key players, along with their respective interactions. By combining tailored in vivo experiments and mathematical modeling approaches, the book clarifies the relative contributions of different underlying mechanisms within hosts of the most lethal viral infections, including HIV, influenza and Ebola. Illustrative examples for parameter fitting, modeling and control applications are explained using MATLAB and R.
This is the second volume of the comprehensive, two-volume work on oxidative stress in lung diseases. Adopting a multidisciplinary approach, it demonstrates the cellular and molecular mechanisms associated with ROS (reactive oxygen species)-induced initiation and progression of a variety of lung diseases, such as COPD, emphysema, asthma, cystic fibrosis, occupational pulmonary diseases and pulmonary hypertension and discusses points for therapeutic intervention. The book also covers translational research and the latest research on prevention and therapeutics. Each chapter includes in-depth insights into the mechanisms associated with lung diseases and into identifying targets for drug development. Bridging the gap between fundamental and translational research, and examining applications in the biomedical and pharmaceutical industry, it is a thought- provoking read for basic and applied scientists engaged in biomedical research.
This book presents a collection of studies on state-of-art techniques developed specifically for lignocellulose component derivation, and for the production of functional materials, composite polymers, carbonaceous biocatalysts, and pellets from lignocellulosic biomass, with an emphasis on using sustainable chemistry and engineering to develop innovative materials and fuels for practical application. Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. All chapters were contributed by respected experts in the field from around the globe, providing a broad range of perspectives on cutting-edge applications. The book offers an ideal reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels and environmental engineering. It can also be used as a comprehensive reference source for university students in chemical engineering, material science and environmental engineering.
Advanced Porous Biomaterials for Drug Delivery Applications probes cutting-edge progress in the application of advanced porous biomaterials in drug delivery fields. These biomaterials offer promise in improving upon the design, cost, and creation of potent novel drug delivery systems. The book focuses on two categories: nature engineered and synthetic advanced porous biomaterials, with a wide range of low-cost porous biomaterial-based systems that have been used for the delivery of diverse drugs through in vitro/in vivo approaches. Details how advanced porous biomaterial-assisted systems improve essential properties in drug delivery applications Explains how advanced porous biomaterials systems are being used and explored to improve overall performances of drug delivery systems in mitigating a variety of diseases Emphasizes major applications in drug delivery such as controlled release, cancer therapy, and targeted delivery, and with focus on oral, topical, and transdermal applications Focuses on both naturally available and synthetic low-cost advanced porous biomaterials and their role in enhancing important parameters in drug delivery applications Accessible to readers with bio and non-bio backgrounds This book is an ideal reference for academics, researchers, and industry professionals in the interdisciplinary fields of biomedicine and biomedical engineering, pharmaceuticals, materials science, and chemistry.
This book provides readers with an introduction to the materials and devices necessary for flexible sensors and electronics, followed by common techniques for fabrication of such devices and system-level integration. Key insights into fabrication and processing will guide readers through the tradeoff choices in designing such platforms. A comprehensive review of two specific, flexible bioelectronic platforms, related to smart bandages for wound monitoring and thread-based diagnostics for wearable health, will demonstrate practical application at the system level. The book also provides a unique electrical engineering perspective by reviewing circuit architectures for low noise signal conditioning of weak signals from sensors,, and for low power analog to digital converters for signal acquisition. To achieve energy autonomy, authors provide several example of CMOS energy harvesting front end circuits and voltage boosters. Beyond circuit architectures, the book also provides a review of the modern theory of sampling and recovery of sparse signals, also known as compressed sensing. They then highlight how these principles can be leveraged for design and implementation of efficient signal acquisition hardware and reliable processing of acquired data for flexible electronic platforms.
Applications of Nanocomposite Materials in Orthopedics provides a solid understanding of recent developments in the field of nano-composites used in orthopedics. The book covers joint replacement, the load bearing capability of fractured bones, bone soft tissue regeneration, hard tissue replacement, artificial bone grafting, bone repair, bone tissue transplantations, and related topics, thus helping readers understand how to resolve problems associated with bone fracture and orthopedic surgery. A variety of nanocomposite materials are discussed, with their properties and preparation methods given.
Careers in Biomedical Engineering offers readers a comprehensive overview of new career opportunities in the field of biomedical engineering. The book begins with a discussion of the extensive changes which the biomedical engineering profession has undergone in the last 10 years. Subsequent sections explore educational, training and certification options for a range of subspecialty areas and diverse workplace settings. As research organizations are looking to biomedical engineers to provide project-based assistance on new medical devices and/or help on how to comply with FDA guidelines and best practices, this book will be useful for undergraduate and graduate biomedical students, practitioners, academic institutions, and placement services.
This book provides an overview of biocomposite chemistry, chemical modifications, characterization and applications in biomedicine, with emphasis on recent advances in the field. Authored by experts, the chapters discuss the design, development and selection of biomedical composites for a particular therapeutic application, as well as providing insight into the regulatory and clinical aspects of biomedical composite use. While this book is primarily intended for scientists from the fields of medical, pharmaceutical, biotechnological and biomedical engineering, it is also useful as an advanced text for students and research scholars. |
You may like...
Hygge - 3 Manuscripts - Discover How To…
Amy White, Ryan James
Hardcover
|