![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
Oral Delivery of Therapeutic Peptides and Proteins provides a complete overview of the journey scientists pursue to attain protein and peptide oral delivery. The book highlights the physiological challenges that must be accounted for in addition to overcoming protease inhibition and acid stability issues that are commonly mentioned in this area of research. Primary topics include formulation technologies being adopted for oral delivery of proteins and peptides, modification of actives to make them more suited for oral delivery, animal models and their shortcomings in assessing oral bioavailability, and in vitro models to simulate drug absorption and transport. Academics and industry researchers working in formulation development and researchers and advanced students in biotechnology and pharmacy will find this a useful resource.
Combined Quantum Mechanical and Molecular Mechanical Modelling of Biomolecular Interactions continues the tradition of the Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins, with each thematically organized volume guest edited by leading experts in a broad range of protein-related topics.
Open microfluidics, the study of microflows having a boundary with surrounding air, encompasses different aspects such as paper or thread-based microfluidics, droplet microfluidics and open-channel microfluidics. Open-channel microflow is a flow at the micro-scale, guided by solid structures, and having at least a free boundary (with air or vapor) other than the advancing meniscus. This book is devoted to the study of open-channel microfluidics which (contrary to paper or thread or droplet microfluidics) is still very sparsely documented, but bears many new applications in biology, biotechnology, medicine, material and space sciences. Capillarity being the principal force triggering an open microflow, the principles of capillarity are first recalled. The onset of open-channel microflow is next analyzed and the fundamental notion of generalized Cassie angle (the apparent contact angle which accounts for the presence of air) is presented. The theory of the dynamics of open-channel microflows is then developed, using the notion of averaged friction length which accounts for the presence of air along the boundaries of the flow domain. Different channel morphologies are studied and geometrical features such as valves and capillary pumps are examined. An introduction to two-phase open-channel microflows is also presented showing that immiscible plugs can be transported by an open-channel flow. Finally, a selection of interesting applications in the domains of space, materials, medicine and biology is presented, showing the potentialities of open-channel microfluidics.
Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.
The Elsevier book-series "Advances in Planar Lipid Bilayers and Liposomes' (APLBL) provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.
Two new volumes of Methods in Enzymology continue the legacy of this premier serial with quality chapters authored by leaders in the field. Circadian Rhythms and Biological Clocks Part A and Part B is an exceptional resource for anybody interested in the general area of circadian rhythms. As key elements of timekeeping are conserved in organisms across the phylogenetic tree, and our understanding of circadian biology has benefited tremendously from work done in many species, the volume provides a wide range of assays for different biological systems. Protocols are provided to assess clock function, entrainment of the clock to stimuli such as light and food, and output rhythms of behavior and physiology. This volume also delves into the impact of circadian disruption on human health. Contributions are from leaders in the field who have made major discoveries using the methods presented here.
Electrochemical Nano-biosensors: Applications in Diagnostics, Therapeutics, Environment, and Food Management features a critical overview of different, recently reported nanomaterial-based electrochemical sensing and biosensing strategies. It is based on various analytical approaches for the point-of-care or POC healthcare related diagnostics, evaluation of contaminants, additives and adulterants in foods and environment management. Each section under the topic is discussed in its exhaustive detail, incorporating significant literature reviews spanning over two decades. The book critically analyzes issues and challenges for its applications in real world settings, universal applicability in resource limited sets-ups of remote areas, ease of integration with other sensing platforms, portability/miniaturization, and more.
This second edition of Medical Biochemistry is supported by more than 45 years of teaching experience, providing coverage of basic biochemical topics, including the structural, physical, and chemical properties of water, carbohydrates, lipids, proteins, and nucleic acids. In addition, the general aspects of thermodynamics, enzymes, bioenergetics, and metabolism are presented in straightforward and easy-to-comprehend language. This book ties these concepts into more complex aspects of biochemistry using a systems approach, dedicating chapters to the integral study of biological phenomena, including cell membrane structure and function, gene expression and regulation, protein synthesis and post-translational modifications, metabolism in specific organs and tissues, autophagy, cell receptors, signal transduction pathways, biochemical bases of endocrinology, immunity, vitamins and minerals, and hemostasis. The field of biochemistry is continuing to grow at a fast pace. This edition has been revised and expanded with all-new sections on the cell plasma membrane, the human microbiome, autophagy, noncoding, small and long RNAs, epigenetics, genetic diseases, virology and vaccines, cell signaling, and different modes of programmed cell death. The book has also been updated with full-color figures, new tables, chapter summaries, and further medical examples to improve learning and better illustrate the concepts described and their clinical significance.
Principles of Nucleic Acid Structure, Second Edition, provides the most complete and concise summary of underlying principles and approaches to studying nucleic acid structure, including discussions of X-ray crystallography, NMR, molecular modelling and databases. The book's focus is on a survey of structures that are especially important for biomedical research and pharmacological applications. This updated edition includes the latest advances relevant to recognition of DNA and RNA by small molecules and proteins, including sections on RNA folding, ribosome structure and antibiotic interactions, DNA quadruplexes, DNA and RNA protein complexes and short interfering RNA (siRNA). This reference is a must-have for those seeking an authoritative, comprehensive and up-to-date source on all aspects of nucleic acid structure, from basic first principles to details of recent research results.
Herbal Biomolecules in Healthcare Applications presents extensive detailed information on all the vital principles, basics and fundamental aspects of multiple herbal biomolecules in the healthcare industry. This book examines important herbal biomolecules including alkaloids, glycosides, flavonoids, anthraquinones, steroids, polysaccharides, tannins and polyphenolic compounds, terpenes, fats and waxes, proteins and peptides, and vitamins. These herbal biomacromolecules are responsible for different bioactivities as well as pharmacological potentials. A systematic understanding of the extraction, purification, characterization, applications of these herbal biomolecules and their derivatives in healthcare fields is developed in this comprehensive book. Chapters explore the key topics along with an emphasis on recent research and developments in healthcare fields by leading experts. They include updated literature review of the relevant key topics, good quality illustrations, chemical structures, flow charts, well-organized tables and case studies. Herbal Biomolecules in Healthcare Applications will be useful for researchers working on natural products and biomolecules with bioactivity and nutraceutical properties. Professionals specializing in scientific areas such as biochemistry, pharmacology, analytical chemistry, organic chemistry, clinics, or engineering focused on bioactive natural products will find this book useful.
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Biochemistry of Lipids, Lipoproteins and Membranes, Seventh Edition serves as a comprehensive, general reference book for scientists and students studying lipids, lipoproteins and membranes. Here, across 19 chapters, leaders in the field summarize fundamental concepts, recent research developments, data analysis, and implications for human disease and intervention. Topics discussed include lipid biology in both prokaryotes and eukaryotes, fatty acid synthesis, desaturation and elongation, and pathways leading to synthesis of complex phospholipids, sphingolipids and their structural variants. Chapters also examine how bioactive lipids are involved in cell signaling, with an emphasis on disease implications and pathological consequences. As the field advances, each chapter in this new edition has been fully revised to address emerging topics, with all-new coverage of lipid droplets and their role as regulatory organelles for energy homeostasis, as well as their relationship to obesity, liver disease and diabetes. Evolving research in fatty acid handling and storage in eukaryotes is also discussed in-depth, with new sections addressing fatty acid uptake, activation and lipolysis.
For the past decade or more, much of cell biology research has been focused on determining the key molecules involved in different cellular processes, an analytical problem that has been amenable to biochemical and genetic approaches. Now, we face an integrative problem of understanding how all of these molecules work together to produce living cells, a challenge that requires using quantitative approaches to model the complex interactions within a cell, and testing those models with careful quantitative measurements. This book is an introductory overview of the various approaches, methods, techniques, and models employed in quantitative cell biology, which are reviewed in greater detail in the other volumes in this e-book series. Particular emphasis is placed on the goals and purpose of quantitative analysis and modeling, and the special challenges that cell biology holds for understanding life at the physical level.
Gene therapy as a potential method for treatment of genetic disorders and other malignancies as well as treatment of many cancers has attracted a great amount of attention in recent years. Current research focuses on stable and smart drug/gene delivery systems, including controlled release. Smart nanostructures have been considered as a promising approach when applied to drug and gene delivery systems, and could solve the problems related to the inefficient transfer of medication to the affected cells.
The book will benefit a reader with a background in physical sciences and applied mathematics interested in the mathematical models of genetic evolution. In the first chapter, we analyze several thought experiments based on a basic model of stochastic evolution of a single genomic site in the presence of the factors of random mutation, directional natural selection, and random genetic drift. In the second chapter, we present a more advanced theory for a large number of linked loci. In the third chapter, we include the effect of genetic recombination into account and find out the advantage of sexual reproduction for adaptation. These models are useful for the evolution of a broad range of asexual and sexual populations, including virus evolution in a host and a host population.
Driven in part by the development of genomics, proteomics, and
bioinformatics as new disciplines, there has been a tremendous
resurgence of interest in physical methods to investigate
macromolecular structure and function in the context of living
cells. This volume in "Methods in Cell Biology" is devoted to
biophysical techniques "in vivo" and their applications to cellular
biology. The volume covers methods-oriented chapters on fundamental
as well as cutting-edge techniques in molecular and cellular
biophysics. This book is directed toward the broad audience of cell
biologists, biophysicists, pharmacologists, and molecular
biologists who employ classical and modern biophysical technologies
or wish to expand their expertise to include such approaches. It
will also interest the biomedical and biotechnology communities for
biophysical characterization of drug formulations prior to FDA
approval.
The Textbook of Ion Channels is a set of three volumes providing a wide-ranging reference source on ion channels for students, instructors, and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli like light, sound, odor, and taste, and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and include coverage of key examples of regulatory, physiological, and disease roles for ion channels.
This textbook provides an accessible introduction to physics for undergraduate students in the life sciences, including those majoring in all branches of biology, biochemistry, and psychology and students working on pre-professional programs such as pre-medical, pre-dental, and physical therapy. The text is geared for the algebra-based physics course, often named College Physics in the United States. The order of topics studied are such that most of the problems in the text can be solved with the methods of Statics or Dynamics. That is, they require a free body diagram, the application of Newton’s Laws, and any necessary kinematics. Constructing the text with a standardized problem-solving methodology, simplifies this aspect of the course and allows students to focus on the application of physics to the study of biological systems. Along the way, students apply these techniques to find the tension in a tendon, the sedimentation rate of red blood cells in haemoglobin, the torques and forces on a bacterium employing a flagellum to propel itself through a viscous fluid, and the terminal velocity of a protein moving in a Gel Electrophoresis device. This is part one of a two-volume set; volume 2 introduces students to the conserved-quantities and applies these problem-solving techniques to topics in Thermodynamics, Electrical Circuits, Optics, and Atomic and Nuclear Physics always with continued focus on biological applications.
This is an overview of single molecule physics, the study of both equilibrium and non-equilibrium properties at the single molecule level. It begins with an introduction to this fascinating science and includes a chapter on how to build the most popular instrument for single molecule biophysics, the total internal reflection fluorescence (TIRF) microscope. It concludes with the Poisson process approach to statistical mechanics, explaining how to relate the process to diverse areas and see how data analysis and error bars are integral parts of science.
This volume is a self-contained companion piece to Studying Vibrational Communication, published in 2014 within the same series. The field has expanded considerably since then, and has even acquired a name of its own: biotremology. In this context, the book reports on new concepts in this fascinating discipline, and features chapters on state-of-the art methods for studying behavior tied to substrate-borne vibrations, as well as an entire section on applied biotremology. Also included are a historical contribution by pioneers in the field and several chapters reviewing the advances that have been made regarding specific animal taxa. Other new topics covered are vibrational communication in vertebrates, multimodal communication, and biotremology in the classroom, as well as in art and music. Given its scope, the book will appeal to all those interested in communication and vibrational behavior, but also to those seeking to learn about an ancient mode of communication.
GPCRS: Structure, Function, and Drug Discovery provides a comprehensive overview of recent discoveries and our current understanding of GPCR structure, signaling, physiology, pharmacology and methods of study. In addition to the fundamental aspects of GPCR function and dynamics, international experts discuss crystal structures, GPCR complexes with partner proteins, GPCR allosteric modulation, biased signaling through protein partners, deorphanization of GPCRs, and novel GPCR-targeting ligands that could lead to the development of new therapeutics against human diseases. GPCR association with, and possible therapeutic pathways for, retinal degenerative diseases, Alzheimer's disease, Parkinson's disease, cancer and diabetic nephropathy, among other illnesses, are examined in-depth. |
You may like...
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
The O'Farrell Cup - The Quest for the…
John Scascighini, Brian Lawrence
Hardcover
R1,030
Discovery Miles 10 300
Intelligent Integrated Energy Systems…
Peter Palensky, Milos Cvetkovic, …
Hardcover
R2,668
Discovery Miles 26 680
Mathematical and Physical Simulation of…
M. Pietrzyk, L. Cser, …
Hardcover
R4,188
Discovery Miles 41 880
Using Airborne Lidar in Archaeological…
Simon Crutchley, Peter Crow
Paperback
R1,147
Discovery Miles 11 470
|