![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
In this book, leading scientists in the fields of sensory biology, neuroscience, physics and engineering explore the basic operational principles and behavioral uses of flow sensing in animals and how they might be applied to engineering applications such as autonomous control of underwater or aerial vehicles. Although humans possess no flow-sensing abilities, countless aquatic (e.g. fish, cephalopods and seals), terrestrial (e.g. crickets and spiders) and aerial (e.g. bats) animals have flow sensing abilities that underlie remarkable behavioral feats.These include the ability to follow silent hydrodynamic trails long after the trailblazer has left the scene, to form hydrodynamic images of their environment in total darkness, and to swim or fly efficiently and effortlessly in the face of destabilizing currents and winds. "
Dynamic Biological Organization is a fascinating account of the living organisms as dynamic systems, based on the concept that the spatio-temporal coherence of events within a living system result from the intrinsic dynamics of the processes taking place within that sysem. The authors of this important work, Miguel Aon and Sonia Cortassa have travelled widely to work in some of the leading research laboratories to accumulate a large information base on which to assemble this book. Taking a transdisciplinary approach, the authors draw on work at the interface of biochemistry, genetics, physiology, thermodynamics, kinetics and biomathematics, using mathematical models throughout to corroborate and analyze the biological complexity presented. Emphasizing biological processes occuring at the cellular level. Dynamic Biological Organization gives exciting insights into the experimental and theoretical applications of modern scientific paradigms to fundamental biological processes.
Bioelectricity, 3E will enhance on the developments since the successful last edition. This new edition of the classic introductory text to bioelectricity (electrophysiology) aims at biomedical engineering students and is authored by two eminent biomedical engineering professors at Duke University. Its 12 chapters cover topics in bioelectricity: electrical properties of the cell membrane; action potentials; cable theory; neuromuscular junction; extracellular fields; cardiac electrophysiology. The authors discuss many topics that are central to biophysics and bioengineering and the quantitative methods employed. In addition, this classic text will be complemented by a Bioelectricity Solutions Manual, sure to aid the speed and assimilation of the Teaching Text material to the new biomedical engineering student.
Advancement in the field of nanotechnology has revolutionized the field of medicines and pharmaceuticals in the twentieth century. The proper use of nanomaterials in medical applications requires a proper understanding of these compounds. This correct understanding, beyond the physical and chemical properties, must also have the correct logic of use. In other words, the strategic use of nanomaterials with applicable perspective can also help to advance research, but if we go forward with the current research perspective that leads to the expansion of inapplicable researches, the intrinsic importance of using these nanomaterials is eliminated. This book, considering the importance of nanomaterials and their application in medicine, as well as the significant growth of biomaterials in research fields, introduces the variables law (Rabiee's theory) for the implementation of this research and the establishment of a proper strategy. Considering that the degree of number of biomaterial and host variables follow a variety factors, and by increasing the degree of number of biomaterials and host variables, the degree of total variables also increases and as a result, performance and, consequently, biomaterial behavior in the host environment will have less control and predictive capabilities. For an external substance that is supposed to be in the human body, it must be predictable and controllable, In addition, according to the principle that the host in a fixed person does not have the ability to change, therefore, by using the simpler biomaterials (with less variables), the above goal is more accessible. It should be noted that in addition to observing biocompatibility tests for a biomaterial based on existing protocols and standards, the Applicable Compatibility (AC) parameter is also required in accordance with Rabiee's theory. This book is written in accordance with Rabiee's theory and the contents of this book should be evaluated from this perspective.
Weights and measures form an essential part of our ingrained view of the world. It is just about impossible to function effectively without some internalized system of measurement.
Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.
Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain. Written for: Researchers, engineers, graduate students in complexity, applied nonlinear dynamics, neuroscience
It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework, the technical problems and the wide field of applications in the food industry, medicine, pharmacology, environmental science and basic sciences are presented in this book, which also includes the rapidly growing literature. This book is written by the most outstanding international scientists familiar with this topic who have been working in this field for many years.
This second edition of the book on Store-operated Ca2+ Entry Pathways has been updated with the newest discoveries that emerged in the field within the last five years. The crystal structure of the Ca2+ signaling core complex is described which adds to a new understanding of the molecular interactions involved. Each chapter has been revised and extended. The book retains its interdisciplinary approach and supplies biochemists, cell biologists and biophysicists as well as clinicians in immunology, neurology and cardiology with valuable information on Ca2+ signaling mechanisms, functions, dysfunctions and their consequences.
This thesis reports on the development of the first quantum enhanced microscope and on its applications in biological microscopy. The first quantum particle-tracking microscope, described in detail here, represents a pioneering advance in quantum microscopy, which is shown to be a powerful and relevant technique for future applications in science and medicine. The microscope is used to perform the first quantum-enhanced biological measurements -- a central and long-standing goal in the field of quantum measurement. Sub diffraction-limited quantum imaging is achieved, also for the first time, with a scanning probe imaging configuration allowing 10-nanometer resolution.
As a research subject, the biomechanics of the urinary bladder are relatively young, yet medical problems associated with them are as old as mankind. Offering an update on recent achievements in the field, the authors highlight the underlying biological, chemical and physical processes of bladder function and present the systematic development of a mathematical model of the organ as a thin, soft biological shell. The book will be a valuable resource for postgraduate students and researchers interested in the applications of computational mathematics and solid mechanics to modern problems in biomedical engineering and medicine.
The study of dielectric properties of biological systems and their components is important not only for fundamental scientific knowledge but also for its applications in medicine, biology, and biotechnology. The associated technique - known as dielectric spectroscopy - has enabled researchers to quickly and accurately acquire time- or frequency-spectra of permittivity and conductivity and permitted the derivation and testing of realistic electrical models for cells and organelles. This text covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems. The authors' combined efforts provide a comprehensive and cohesive book that takes advantage of the expertise of multiple scientists involved in cutting-edge research in the specific sub-fields of bio-dielectric spectroscopy while maintaining its self-consistency through numerous discussions. The first six chapters cover theoretical, methodological and experimental aspects of relaxation and dispersion in biological dielectrics at molecular, cellular and cellular aggregate level. Applications are presented in the following chapters which are organized in the order of increased complexity, beginning with pure water, amino acids and proteins, continuing with vesicles and simple cells such as erythrocytes, and then with more complex, organelle-containing cells and cellular aggregates. Due to its broad coverage, the text could be used as a reference book by researchers, and as a textbook for upper-level undergraduate classes and graduate classes in (bio) physics, medical physics, quantitative biology, and engineering.
Many biological phenomena are especially interesting from a physical point of view, and recent developments have made it possible to perform quantitative, 'physics-style' experiments on many different biological systems. In this volume, composed largely of lectures at a summer workshop for students in 1991, many of those emerging problems in biophysics are surveyed, with emphasis on the confrontation between theory and experiment. The topics range from the structure and dynamics of individual biological molecules to the computational strategies of the nervous system.
Cognition and artificial intelligence are entering a new era in which the aspects of symbolic manipulation and of connectionism begin to come together. This leads to a dialog of truly interdisciplinary character. The book covers aspects of fuzzy logic, case based reasoning, learning as well as meaning, language, and consciousness. The authors of this topical volume have their background in logic, computer science, physics and mathematics, philosophy, psychology and neurobiology.
This book focuses on all of the major problems associated with the absence of body weight in space, by analyzing effects, adaption, and re-adaptation upon returning to Earth, using sound scientific principles embedded in a historical context. Serious problems for space travelers range from Space Motion Sickness (SMS) to recently discovered ocular effects that may permanently impair vision. Fluid loss and shifts, spinal changes, and bone and muscle loss are also all results of weightlessness. Starting with a brief definition and history of weightlessness, the authors then address in detail each problem as well as the countermeasures aimed at alleviating them. In some cases, alternative hypotheses regarding what can and should be attempted are also presented. As plans for long-term missions to the Moon and Mars develop, it will be essential to find countermeasures to weightlessness that are effective for missions that could span years.
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
The theory of stochastic processes provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. Noise-induced, noise-supported or noise-enhanced effects sometimes offer an explanation for as yet open problems (information transmission in the nervous system and information processing in the brain, processes at the cell level, enzymatic reactions, etc.), or pave the way to novel technological applications. Noise can play a prominent role in structure formation in physics, chemistry and biology, e.g. current filaments in semiconductors, catalytic reactions on surfaces, complex dynamics of the heart, brain, or of ecosystems. The book reviews those aspects of applied stochastics addressing researchers as well as students.
This book is the proceedings of the 7th International Summer School on Biophysics: Supramolecular Structure and Function, held September 14-26, 2000, in Rovinj, Croatia. An enormous amount of new knowledge on the molecular basis of biological phenomena has emerged in the rapidly expanding field of biophysics. The principles and methods of modern biophysics now provide a strong foundation for all of the biosciences, and serve as a rational common language for scientists from various disciplines. The series of books on Supramolecular Structure and Function was inspired by the International Summer School on Biophysics, established under the sponsorship of IUPAB, UNESCO, and ICGEB, held in Rovinj, in 2001, and follows the successful interdisciplinary approach. This volume covers some powerful methods, such as analytical centrifugation, mass spectrometry, fluorescence spectroscopy, infrared spectroscopy, electron spin resonance and nuclear magnetic resonance, for the study of complex biological structures, and discusses useful physical concepts as applied to biological and biochemical systems. Case-orientated studies concentrating on particular methodologies are presented and examples are given, addressing some of the most important aspects of structure-function relationship in biological assemblies. Biophysics nowadays collaborates closely with molecular biology and bioinformatics as well as with neurosciences, and this is also demonstrated in this book. The book should be of interest both to experienced researchers wishing to widen their insight into molecular structure and function, and to younger scientists at the doctoral and postdoctoral level interested in the molecular nature offundamental biological entities and phenomena.
Applications of Cryogenic Technology, Vol. 10, is the proceedings from the portion of the conference CRYO-90 sponsored by the Cryogenic Society of America (CSA). CRYO-90, held on the campus of the State University of New York, Binghamton, New York, was an unusual interdisciplinary event, drawing from the life sciences as well as the physical science and engineering areas of the low temperature community. Co-sponsoring CRYO-90 with CSA were the Society for Cryobiology and the Symposium on Invertebrate and Plant Cold Hardiness. These latter two organizations brought an exciting developing field to the conference, a field whose exploration will lead to the betterment of all mankind through improved cryosurgical and organ preservation techniques in addition to improved agricultural and herd yields under extreme conditions. Specific goals of the cryobiological community are cryopreservation, the arrest and recovery of living processes of cells, tissues and organs; and cryosurgery - the local cryodestruction of diseased cells while preserving the healthy surrounding tissue. These goals present great technological challenges. The technological requirements of the cryobiologist include the ability to cool tissues 6 at rates of 10 degrees per second (vitrification), to thaw frozen tissue without damaging the delicate cells, to freeze dry tissue using molecular distillation (vacuum) drying, to supercool cell structures below O DegreesC without freezing, and to successfully store the preserved tissues and organs for any required length of time.
This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single molecules were developed, including immobilization strategies for observing fine structures of living cells, measurements of single-cell mechanics, force recognition of molecular interactions, and mapping protein organizations on cell surface. The biomedical applications of these methods in clinical lymphoma treatments were explored in detail, including primary sample preparation, cancer cell recognition, AFM detection and data analysis. Future directions about the biomedical applications of AFM are also given.
There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B, B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative "routine CW EPR" is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.
There are probably few people who do not dream of the good old times, when do ing science often meant fascination, excitement, even adventure. In our time, do ing science involves often technology and, perhaps, even business. But there are still niches where curiosity and fascination have their place. The subject of this book, technological as its title may sound, is one of the fortunate examples. It will report on lasers generating the coldest places in the Universe, and on table top laser microtools which can produce a heat "inferno" as it prevails in the interior of the Sun, or simulate, for specific plant cells, microgravity of the space around our plan et Earth. There will be some real surprises for the reader. The applications range from basic studies of the driving forces of cell division (and thus life) via genetic modification of cells (for example, for plant breeding) to medical applications such as blood cell analysis and finally in vitro fertilization. What are these instruments: laser microbeams and optical tweezers? Both are lasers coupled with a fluorescence microscope. The laser microbeam uses a pulsed ultraviolet laser. Light is focused, as well as possible, in space and time, in order to obtain extremely high light intensities - high enough to generate, for a very short instant, extremely hot spots which can be used to cut, fuse or perforate biological material."
A reissue of a classic book -- corrected, edited, typeset, redrawn, and indexed for the Biological Physics Series. In- tended for undergraduate courses in biophysics, biological physics, physiology, medical physics, and biomedical engineering, this is an introduction to statistical physics with examples and problems from the medical and biological sciences. Topics include the elements of the theory of probability, Poisson statistics, thermal equilibrium, entropy and free energy, and the second law of thermodynamics. It can be used as a supplement to standard introductory physics courses, and as a text for medical schools, medical physics courses, and biology departments. The three volumes combined present all the major topics in physics. These books are being reissued in response to frequent requests to satisfy the growing need among students and practitioners in the medical and biological sciences with a working knowledge of the physical sciences. The books are also in demand in physics departments either as supplements to traditional intro texts or as a main text for those departments offering courses with biological or medical physics orientation.
This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing numbers of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.The selected examples impressively demonstrate how the combination of functional analysis, crystallography, investigation of dynamics and computational studies has made it possible to create a conclusive picture or more precisely, a molecular movie . Although we are still far from a complete molecular description of the alternating access mechanism, remarkable progress has been made from static snapshots towards membrane transport dynamics." |
You may like...
The Mathematical Theory of Bridge - 134…
Emile Borel, Cheron Andre
Hardcover
R1,064
Discovery Miles 10 640
The Golden Rules of Constructive Bidding
Julian Pottage, Marc Smith
Paperback
R227
Discovery Miles 2 270
|