![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
In this thesis, the author investigates the biophysical basis of the local field potential (LFP) as a way of gaining a better understanding of its underlying physiological mechanisms. The results represent major advances in our understanding and interpretation of LFPs and brain oscillations. They highlight the importance of using suitable experimental and analytical methods to explore the activity of brain circuits and point to the LFP as a useful, but complex variable for this purpose.
This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.
Ion channels are membrane proteins that act as gated pathways for
the movement of ions across cell membranes. They play essential
roles in the physiology of all cells. In recent years, an
ever-increasing number of human and animal diseases have been found
to result from defects in ion channel function. Most of these
diseases arise from mutations in the genes encoding ion channel
proteins, and they are now referred to as the
channelopathies.
Sodium reabsorbing epithelia play a major role in whole-body sodium
homeostasis. Some examples of sodium regulating tissues include
kidney, colon, lung, and sweat ducts. Sodium transport across these
membranes is a two-step process: entry through an
amiloride-sensitive sodium channel and exit via the
ouabain-sensitive sodium/potassium ATPase. The sodium entry
channels are the rate-limiting determinant for transport and are
regulated by several different hormones. The sodium channels also
play a significant role in a number of disease states, like
hypertension, edema, drug-induced hyperkalemia, and cystic
fibrosis. Amiloride-Sensitive Sodium Channels: Physiology and
Functional Diversity provides the first in-depth exchange of ideas
concerning these sodium channels, their regulation and involvement
in normal and pathophysiological situations.
Defined as, "The science about the development of an embryo from the fertilization of the ovum to the fetus stage," embryology has been a mainstay at universities throughout the world for many years. Throughout the last century, embryology became overshadowed by experimental-based genetics and cell biology, transforming the field into developmental biology, which replaced embryology in Biology departments in many universities. Major contributions in this young century in the fields of molecular biology, biochemistry and genomics were integrated with both embryology and developmental biology to provide an understanding of the molecular portrait of a "development cell." That new integrated approach is known as stem-cell biology; it is an understanding of the embryology and development together at the molecular level using engineering, imaging and cell culture principles, and it is at the heart of this seminal book. Stem Cells and Regenerative Medicine: From Molecular Embryology to Tissue Engineering is completely devoted to the basic developmental, cellular and molecular biological aspects of stem cells as well as their clinical applications in tissue engineering and regenerative medicine. It focuses on the basic biology of embryonic and cancer cells plus their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. In addition, it covers other key relevant topics such as nuclear reprogramming induced pluripotency and stem cell culture techniques using novel biomaterials. A thorough introduction to stem-cell biology, this reference is aimed at graduate students, post-docs, and professors as well as executives and scientists in biotech and pharmaceutical companies.
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. It is organized in two main parts, the first of which covers applied physics topics, including lasers and accelerators; condensed matter, soft matter and materials science; nanoscience and quantum engineering; atomic, molecular, optical and plasma physics; as well as nuclear and high-energy particle physics. It also addresses astrophysics, gravitation, earth and environmental science, as well as medical and biological physics. The second part focuses on advances in system science and computers, exploring automatic circuit control, power systems, computer communication, fluid mechanics, simulation and modeling, software engineering, data structures and applications of artificial intelligence among other areas. Offering a collection of contributions presented at the 1st International Conference on Applied Physics, System Science and Computers (APSAC 2016), the book bridges the gap between applied physics and electrical engineering. It not only to presents new methods, but also promotes collaborations between different communities working on related topics at the interface between physics and engineering, with a special focus on communication, data modeling and visualization, quantum information, applied mechanics as well as bio and geophysics.
Advances in Microbial Physiology serial highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
This volume provides an overview of the development and scope of molecular biophysics and in-depth discussions of the major experimental methods that enable biological macromolecules to be studied at atomic resolution. It also reviews the physical chemical concepts that are needed to interpret the experimental results and to understand how the structure, dynamics, and physical properties of biological macromolecules enable them to perform their biological functions. Reviews of research on three disparate biomolecular machines-DNA helicases, ATP synthases, and myosin--illustrate how the combination of theory and experiment leads to new insights and new questions.
From the Reviews of the Previous Volumes
A variety of biophysical applications (e.g. leaf area index and evapotranspiration) have been derived from using remote sensing methods as for example from NASA s MODIS sensors and other satellite platforms. In Biophysical Applications of Satellite Remote Sensing the authors thoroughly describe the major applications of satellite remote sensing for studying earth's biophysical phenomena. Starting with an introductory and historical overview of the biophysical applications of satellite remote sensing the book provides a comprehensive background and reference base for researchers and newcomers to the field. The focus of the book lies on the broad palette of specific applications (metrics) of biophysical activity derived using satellite remote sensing. Each type of application is described and its use discussed in detail; this includes the theoretical background and methodology, validation efforts by using in-situ observations and major scientific findings associated with each application. With its in-depth discussions of satellite-derived biophysical metrics with an emphasis on theory, methodology, validation, major findings and directions of future research, this book provides an excellent resource for remote sensing specialists, ecologists, geographers, biologists, climatologists and environmental scientists.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 285 volumes have been
published (all of them still in print) and much of the material is
relevant even today-truly an essential publication for
researchersin all fields of life sciences.
Scope and ideas of the workshop The workshop which took place at the University of Giessen from Oct. 3 to Oct. 7, 2002 and whose proceedings are collected in this volume started from the idea to convene a number of scientists with the aim to outline their "visions" for the future of radiation research on the basis of their expertise. As radiation research is a very wide field restrictions were unavoidable. It was decided to concentrate this time mainly on molecular and cellular biology because it was felt that here action is par-ticularly needed. This did not exclude contributions from neighbouring fields as may be seen from the table of contents. It was clearly not planned to have a c- prehensive account of the present scientif fic achievements but the results presented should only serve as a starting point for the discussion of future lines of research, with the emphasis on the "outreach" to other parts of life sciences. If you are interested in the future ask the young - we attempted, therefore, to invite mainly younger colleagues (with a few exceptions) who had, however, already left their marks in the field. They were asked to describe what they felt is important in radiation research and may have significant influences on other branches of life sciences. They were given the task to demonstrate what is lost for science "if we do no longer exist".
The application to Biology of the methodologies developed in Physics is attracting an increasing interest from the scientific community. It has led to the emergence of a new interdisciplinary field, called Physical Biology, with the aim of reaching a better understanding of the biological mechanisms at molecular and cellular levels. Statistical Mechanics in particular plays an important role in the development of this new field. For this reason, the XXth session of the famous Sitges Conference on Statistical Physics was dedicated to "Physical Biology: from Molecular Interactions to Cellular Behavior." As is by now tradition, a number of lectures were subsequently selected, expanded and updated for publication as lecture notes, so as to provide both a state-of-the-art introduction and overview to a number of subjects of broader interest and to favor the interchange and cross-fertilization of ideas between biologists and physicists. The present volume focuses on three main subtopics (biological water, protein solutions as well as transport and replication), presenting for each of them the on-going debates on recent results. The role of water in biological processes, the mechanisms of protein folding, the phases and cooperative effects in biological solutions, the thermodynamic description of replication, transport and neural activity, all are subjects that are revised in this volume, based on new experiments and new theoretical interpretations.
Bringing together nanoscience with stem cell and bacterial cell biology, this thesis is truly interdisciplinary in scope. It shows that the creation of superparamagnetic nanoparticles inside a protein coat, followed by chemical functionalisation of the protein surface, provides a novel methodology for cell magnetisation using incubation times as short as one minute. Crucially, stem cell proliferation and multi-lineage differentiation capacity is not impaired after labelling. Due to the unspecific labelling mechanism, this thesis also shows that the same magnetic protein nanoparticles can be used for rapid bacterial magnetisation. Thus, it is possible to magnetically capture and concentrate pathogens from clinical samples quickly and highly efficiently.
This is the third volume in the series, in which the topic of the effects of radio frequencies on human tissue, now increasingly a concern with the prevalence of cell phones, is explored by Prof. Lin and other researchers. The impact of electromagnetics on imaging and cardiology, both very keen areas of research at present, is also explored.
In this book, leading scientists in the fields of sensory biology, neuroscience, physics and engineering explore the basic operational principles and behavioral uses of flow sensing in animals and how they might be applied to engineering applications such as autonomous control of underwater or aerial vehicles. Although humans possess no flow-sensing abilities, countless aquatic (e.g. fish, cephalopods and seals), terrestrial (e.g. crickets and spiders) and aerial (e.g. bats) animals have flow sensing abilities that underlie remarkable behavioral feats.These include the ability to follow silent hydrodynamic trails long after the trailblazer has left the scene, to form hydrodynamic images of their environment in total darkness, and to swim or fly efficiently and effortlessly in the face of destabilizing currents and winds. "
This informative publication brings together knowledge of various
aspects of cellular regulation. Current Topics in Cellular
Regulation reviews the progress being made in those specialized
areas of study that have undergone substantial development. It also
publishes provocative new theories and concepts and serves as a
forum for the discussion of general principles. Researchers in
cellular regulation as well as biochemists, molecular and cell
biologists, microbiologists, and biophysicists will find Current
Topics in Cellular Regulation a useful source of up-to-date
information.
Birds and reptiles have long fascinated investigators studying hearing and the auditory system. The highly evolved auditory inner ear of birds and reptiles shares many characteristics with the ear of mammals. Thus, the two groups are essential in understanding the form and function of the vertebrate and mammalian auditory systems. Comparative Hearing: Birds and Reptiles covers the broad range of our knowledge of hearing and acoustic communication in both groups of vertebrates. This volume addresses the many similarities in their auditory systems, as well as the known significant differences about hearing in the two groups.
This second edition of the book on Store-operated Ca2+ Entry Pathways has been updated with the newest discoveries that emerged in the field within the last five years. The crystal structure of the Ca2+ signaling core complex is described which adds to a new understanding of the molecular interactions involved. Each chapter has been revised and extended. The book retains its interdisciplinary approach and supplies biochemists, cell biologists and biophysicists as well as clinicians in immunology, neurology and cardiology with valuable information on Ca2+ signaling mechanisms, functions, dysfunctions and their consequences.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets.
Bioelectricity, 3E will enhance on the developments since the successful last edition. This new edition of the classic introductory text to bioelectricity (electrophysiology) aims at biomedical engineering students and is authored by two eminent biomedical engineering professors at Duke University. Its 12 chapters cover topics in bioelectricity: electrical properties of the cell membrane; action potentials; cable theory; neuromuscular junction; extracellular fields; cardiac electrophysiology. The authors discuss many topics that are central to biophysics and bioengineering and the quantitative methods employed. In addition, this classic text will be complemented by a Bioelectricity Solutions Manual, sure to aid the speed and assimilation of the Teaching Text material to the new biomedical engineering student.
Weights and measures form an essential part of our ingrained view of the world. It is just about impossible to function effectively without some internalized system of measurement.
Praise for the Series:
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science. |
![]() ![]() You may like...
Jack Sabin, Scientist and Friend, Volume…
Jens Oddershede, Erkki J. Brandas
Hardcover
R5,422
Discovery Miles 54 220
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,686
Discovery Miles 56 860
Advances in Microbial Physiology, Volume…
Robert K. Poole, David J. Kelly
Hardcover
R4,077
Discovery Miles 40 770
Structure and Intrinsic Disorder in…
Munishwar Nath Gupta, Vladimir N. Uversky
Paperback
R3,736
Discovery Miles 37 360
Viral Replication Enzymes and their…
Craig E. Cameron, Jamie J. Arnold
Hardcover
R4,054
Discovery Miles 40 540
Advances in Microbial Physiology, Volume…
Robert K. Poole, David J. Kelly
Hardcover
R4,077
Discovery Miles 40 770
|