![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes.
Quantum Boundaries of Life, Volume 82 in the Advances in Quantum Chemistry series, presents current topics in this rapidly developing field that have emerged at the cross section of mathematics, physics, chemistry and biology. Topics covered include Quantum Considerations of Neural Memory, Functional Neural Electron Transport, Plasmon-polariton mechanism of the saltatory conduction in myelinated axons, Quantum Field Theory Formulation of Brain Dynamics: Nonequilibrium, Multi Field Theory Formulation of Brain Dynamics, Quantum Protein Folding, Classical-Quantum Interplay in Living Neural Tissue Function, Quantum Effects in Life Dynamics, Quantum transport and utilization of free energy in protein a-helices, and much more. The book's message is simple. Mystics prefer to put consciousness in the cosmos to avoid Darwinism. If the seat of consciousness is found to evolve within all animals, then we have a Darwinian understanding not only of the origin of life and species according to natural selection but also concerning consciousness and, in particular, life being quantum Darwinian.
Enzyme Active Sites and their Reaction Mechanisms provides a one-stop reference on how enzymes "work." Here, Dr. Harry Morrison, PhD and Professor Emeritus at Purdue University, provides a detailed overview of the origin and function of forty enzymes, the chemical details of their active sites, their mechanisms of action, and associated cofactors. The enzymes featured highlight a step forward, along with possible areas of application, thus supporting new research in academic and industrial labs. Each chapter is written in a clear format, including a brief summary of enzyme function and structure, a detailed description of their mechanisms of action and associated co-factors.
Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology.
Recent advances witness the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance the efficacy and specificity, the control and guidance of drug carriers in vasculature has become crucial. Current bottlenecks in the optimal design of drug carrying particles are the lack of knowledge about the transport of particles, adhesion on endothelium wall and subsequent internalization into diseased cells. To study the transport and adhesion of particle in vasculature, the authors have made great efforts to numerically investigate the dynamic and adhesive motions of particles in the blood flow. This book discusses the recent achievements from the establishment of fundamental physical problem to development of multiscale model, and finally large scale simulations for understanding transport of particle-based drug carriers in blood flow.
This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales - molecular, cellular, and tissue levels - sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.
Nanomedicine is a developing field, which includes different disciplines such as material science, chemistry, engineering and medicine devoted to the design, synthesis and construction of high-tech nanostructures. The ability of these structures to have their chemical and physical properties tuned by structural modification, has allowed their use in drug delivery systems, gene therapy delivery, and various types of theranostic approaches. Colloidal noble metal nanoparticles and other nanostructures have many therapeutic and diagnostic applications. The concept of drug targeting as a magic bullet has led to much research in chemical modification to design and optimize the binding to targeted receptors. It is important to understand the precise relationship between the drug and the carrier and its ability to target specific tissues, and pathogens to make an efficient drug delivery system. This book covers advances based on different drug delivery systems: polymeric and hyper branched nanomaterials, carbon-based nanomaterials, nature-inspired nanomaterials, and pathogen-based carriers.
The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author, without a shadow of a doubt, claims that any readers of this book, regardless of gender, age, financial situation, type of professional activity, and habits, are actually exposed to low doses of radiation throughout their life. This book is devoted to the effect of small doses on the body. To understand the basic effects of radiation on humans, the book contains the necessary information from an atomic, molecular and nuclear physics, as well as from biochemistry and biology. Special attention is paid to the issues that are either not considered or discussed very briefly in existing literature. Examples include the ionization of inner atomic shells that play an essential role in radiological processes, and the questions of transformation of the energy of ionizing radiation in matter. The benefits of ionizing radiation to mankind is reflected in a wide range of radiation technologies used in science, industry, agriculture, culture, art, forensics, and, what is the most important application, medicine. Radiation: Fundamentals, Applications, Risks and Safety provides information on the use of radiation in modern life, its usefulness and indispensability. Experiments on the effects of small doses on bacteria, fungi, algae, insects, plants and animals are described. Human medical experiments are inhuman and ethically flawed. However, during the familiarity of mankind with ionizing radiation, a large number of population groups were subject to accumulation, exposed to radiation at doses of small but exceeding the natural background radiation. This book analyzes existing, real-life radiation results from survivors of Hiroshima and Nagasaki, Chernobyl and Fukushima, and examines studies of radiation effect on patients, radiologists, crews of long-distant flights and astronauts, on miners of uranium copies, on workers of nuclear industry and on militaries, exposed to ionizing radiation on a professional basis, and on the population of the various countries receiving environmental exposure. The author hopes that this book can mitigate the impact of radiation phobia, which prevails in the public consciousness over the last half century.
The Nutritional Biochemistry of Chromium(III), Second Edition, reviews the fields of chromium biochemistry and nutrition and how they have dramatically changed in the last decade. Editor John Vincent has lead much of the research that has resulted in new discoveries and reversals of previously held beliefs, such as health concerns surrounding the toxicity of chromium(III). New sections include a review of new evidence showing why chromium may not be an essential element, why national recommendations may need updating, and new data on the use of chromium supplementation in animal feeds. Discussions on the controversial topic of the role of chromium(III) at the molecular level in insulin signaling and information on cell cultures and in vitro assays of chromium toxicity are also covered.
Advances in Nano and Biochemistry: Environmental and Biomedical Applications gives insights into this advanced interdisciplinary science that encompasses the principles of physics and physical chemistry for the investigation of various processes and problems in biological systems. The book is a concise culmination of biophysical chemistry knowledge acquired through core concepts and advanced technologies for addressing emerging challenges in environmental and biomedical applications. Sections cover early diagnostic techniques and accurate treatment strategies using bioinspired, sustainable technologies, including nanomaterials, nanoenzymes, biopolymers, electrochemical biomolecule sensors, biocompatible magnetic nanomaterials, quantum dots and hybrid structures, and DNA nanotechnology. Other sections discuss advanced technologies for sensing and remedying environmental pollutants, including but not limited to, photocatalytic oxidations, gum polysaccharides based nanostructured materials, bio-inspired and biocompatible nanomaterials, hydrogel nanocomposites, and contemporary enzymes and nanozymes basedtechnologies. Ultimately, the state-of-the-art chapters in this book will empower researchers to combine two complementary elements - chemical analysis use and biomedical applications.
Structure and Intrinsic Disorder in Enzymology offers a direct, yet comprehensive presentation of the fundamental concepts, characteristics and functions of intrinsically disordered enzymes, along with valuable notes and technical insights powering new research in this emerging field. Here, more than twenty international experts examine protein flexibility and cryo-enzymology, hierarchies of intrinsic disorder, methods for measurement of disorder in proteins, bioinformatics tools for predictions of structure, disorder and function, protein promiscuity, protein moonlighting, globular enzymes, intrinsic disorder and allosteric regulation, protein crowding, intrinsic disorder in post-translational, and much more. Chapters also review methods for study, as well as evolving technology to support new research across academic, industrial and pharmaceutical labs.
Biotechnology of Microbial Enzymes: Production, Biocatalysis, and Industrial Applications, Second Edition provides a complete survey of the latest innovations on microbial enzymes, highlighting biotechnological advances in their production and purification along with information on successful applications as biocatalysts in several chemical and industrial processes under mild and green conditions. The application of recombinant DNA technology within industrial fermentation and the production of enzymes over the last three decades have produced a host of useful chemical and biochemical substances. The power of these technologies results in novel transformations, better enzymes, a wide variety of applications, and the unprecedented development of biocatalysts through the ongoing integration of molecular biology methodology, all of which is covered insightfully and in-depth within the book. This fully revised, second edition is updated to address the latest research developments and applications in the field, from microbial enzymes recently applied in drug discovery to penicillin biosynthetic enzymes and penicillin acylase, xylose reductase, and microbial enzymes used in antitubercular drug design. Across the chapters, the use of microbial enzymes in sustainable development and production processes is fully considered, with recent successes and ongoing challenges highlighted.
Atomic Force Microscopy for Nanoscale Biophysics: From Single Molecules to Living Cells summarizes the applications of atomic force microscopy for the investigation of biomolecules and cells. The book discusses the methodology of AFM-based biomedical detection, diverse biological systems, and the combination of AFM with other complementary techniques. These state-of-the-art chapters empower researchers to address biological issues through the application of atomic force microscopy. Atomic force microscopy (AFM) is a unique, multifunctional tool for investigating the structures and properties of living biological systems under aqueous conditions with unprecedented spatiotemporal resolution.
The new field of physical biology fuses biology and physics. New technologies have allowed researchers to observe the inner workings of the living cell, one cell at a time. With an abundance of new data collected on individual cells, including observations of individual molecules and their interactions, researchers are developing a quantitative, physics-based understanding of life at the molecular level. They are building detailed models of how cells use molecular circuits to gather and process information, signal to each other, manage noise and variability, and adapt to their environment. This book narrows down the scope of physical biology by focusing on the microbial cell. It explores the physical phenomena of noise, feedback, and variability that arise in the cellular information-processing circuits used by bacteria. It looks at the microbe from a physics perspective, to ask how the cell optimizes its function to live within the constraints of physics. It introduces a physical and information based -- as opposed to microbiological -- perspective on communication and signaling between microbes. The book is aimed at non-expert scientists who wish to understand some of the most important emerging themes of physical biology, and to see how they help us to understand the most basic forms of life.
The clinical use of Artificial Intelligence (AI) in radiation oncology is in its infancy. However, it is certain that AI is capable of making radiation oncology more precise and personalized with improved outcomes. Radiation oncology deploys an array of state-of-the-art technologies for imaging, treatment, planning, simulation, targeting, and quality assurance while managing the massive amount of data involving therapists, dosimetrists, physicists, nurses, technologists, and managers. AI consists of many powerful tools which can process a huge amount of inter-related data to improve accuracy, productivity, and automation in complex operations such as radiation oncology.This book offers an array of AI scientific concepts, and AI technology tools with selected examples of current applications to serve as a one-stop AI resource for the radiation oncology community. The clinical adoption, beyond research, will require ethical considerations and a framework for an overall assessment of AI as a set of powerful tools.30 renowned experts contributed to sixteen chapters organized into six sections: Define the Future, Strategy, AI Tools, AI Applications, and Assessment and Outcomes. The future is defined from a clinical and a technical perspective and the strategy discusses lessons learned from radiology experience in AI and the role of open access data to enhance the performance of AI tools. The AI tools include radiomics, segmentation, knowledge representation, and natural language processing. The AI applications discuss knowledge-based treatment planning and automation, AI-based treatment planning, prediction of radiotherapy toxicity, radiomics in cancer prognostication and treatment response, and the use of AI for mitigation of error propagation. The sixth section elucidates two critical issues in the clinical adoption: ethical issues and the evaluation of AI as a transformative technology.
With the rapid growth of new evidence from astronomy, space science and biology that supports the theory of life as a cosmic rather than terrestrial phenomenon, this book discusses a set of crucial data and pictures showing that life is still arriving at our planet. Although it could spark controversy among the most hardened sceptics this book will have an important role in shaping future science in this area.
The arena of sport is filled with marvelous performances and feats that, at times, seem almost beyond belief. As curious onlookers, we often wonder whether or not athletes will reach certain peaks and what determines their limits of athletic performance. Science, with its emphasis on theoretical development and experimental results, is uniquely equipped to answer these kinds of questions. Over the past two decades, I have been asked innumerable questions related to how science can provide these kinds of insights. Science in the Arena is written as an outgrowth of those interactions with the primary goal of communicating useful and understandable scientific explanations of athletic performance.
This bestselling reference bridges the gap between the introductory and highly specialized books dealing with aspects of food biochemistry for undergraduate and graduate students, researchers, and professionals in the fi elds of food science, horticulture, animal science, dairy science and cereal chemistry. Now fully revised and updated, with contributing authors from around the world, the third edition of Biochemistry of Foods once again presents the most current science available. The first section addresses the biochemical changes involved in the development of raw foods such as cereals, legumes, fruits and vegetables, milk, and eggs. Section II reviews the processing of foods such as brewing, cheese and yogurt, oilseed processing as well as the role of non-enzymatic browning. Section III on spoilage includes a comprehensive review of enzymatic browning, lipid oxidation and milk off-flavors. The final section covers the new and rapidly expanding area of rDNA technologies. This book provides transitional coverage that moves the reader from concept to application.
The World of Nano-Biomechanics, Second Edition, focuses on the remarkable progress in the application of force spectroscopy to molecular and cellular biology that has occurred since the book's first edition in 2008. The initial excitement of seeing and touching a single molecule of protein/DNA is now culminating in the development of various ways to manipulate molecules and cells almost at our fingertips, enabling live cell operations. Topics include the development of molecular biosensors, mechanical diagnosis, cellular-level wound healing, and a look into the advances that have been made in our understanding of the significance of mechanical rigidity/flexibility of protein/DNA structure for the manifestation of biological activities. The book begins with a summary of the results of basic mechanics to help readers who are unfamiliar with engineering mechanics. Then, representative results obtained on biological macromolecules and structures, such as proteins, DNA, RNA, polysaccharides, lipid membranes, subcellular organelles, and live cells are discussed. New to this second edition are recent developments in three important applications, i.e., advanced AFM-data analysis, high-resolution mechanical biosensing, and the use of cell mechanics for medical diagnosis.
Quantum Mechanics, Cell-Cell Signaling, and Evolution offers a detailed accounting of the latest research and theorizing on the integration of quantum physics with biological action to produce a novel perspective on evolution. The book advocates for a paradigm shift towards understanding biology and medicine causally as predictive sciences, presenting quantum mechanics and physiology as vertically integrated. The author has taken a unique approach to the question of how and why evolution occurred. The account is based on extensive knowledge of lipid physical chemistry, and its role in the evolution of the lung under the influence of hormonal effects on structure and function. The title arranges lipid biochemistry and biophysics into an integrated explanation, guiding readers from the immersion of lipids in water as the origin of life, to lung surfactant in alveolar homeostasis, and leading to a new understanding of how consciousness interacts with the laws of nature. This volume argues for a novel understanding of evolutionary processes based on fundamental science and positions itself as seeking consilience among research disciplines. Starting from the origins of the cosmos, the author proceeds through nucleosynthesis and Endosymbiosis Theory, to finally describe consciousness in relation to natural law. |
You may like...
Ewa Orlowska on Relational Methods in…
Joanna Golinska-Pilarek, Michal Zawidzki
Hardcover
R3,873
Discovery Miles 38 730
PCI Compliance - Understand and…
Branden Williams, James Adamson
Paperback
R1,371
Discovery Miles 13 710
Variable Structure Control of Complex…
Xinggang Yan, Sarah K. Spurgeon, …
Hardcover
Complex Networks IX - Proceedings of the…
Sean Cornelius, Kate Coronges, …
Hardcover
R2,701
Discovery Miles 27 010
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,271
Discovery Miles 52 710
|