Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
Energy, water, affordable healthcare and global warming are four major concerns resulting from resource depletion, record high oil prices, clean water shortages, high costs of pharmaceuticals, and changing climate conditions. Among many potential solutions, advance in membrane technology is one of the most direct, effective and feasible approaches to solve these sophisticated issues. This membrane book presents cutting-edge membrane research and development for water reuse and desalination, energy development including biofuels, CO2 capture, pharmaceutical purification and separation, and biomedical applications.
The clinical use of Artificial Intelligence (AI) in radiation oncology is in its infancy. However, it is certain that AI is capable of making radiation oncology more precise and personalized with improved outcomes. Radiation oncology deploys an array of state-of-the-art technologies for imaging, treatment, planning, simulation, targeting, and quality assurance while managing the massive amount of data involving therapists, dosimetrists, physicists, nurses, technologists, and managers. AI consists of many powerful tools which can process a huge amount of inter-related data to improve accuracy, productivity, and automation in complex operations such as radiation oncology.This book offers an array of AI scientific concepts, and AI technology tools with selected examples of current applications to serve as a one-stop AI resource for the radiation oncology community. The clinical adoption, beyond research, will require ethical considerations and a framework for an overall assessment of AI as a set of powerful tools.30 renowned experts contributed to sixteen chapters organized into six sections: Define the Future, Strategy, AI Tools, AI Applications, and Assessment and Outcomes. The future is defined from a clinical and a technical perspective and the strategy discusses lessons learned from radiology experience in AI and the role of open access data to enhance the performance of AI tools. The AI tools include radiomics, segmentation, knowledge representation, and natural language processing. The AI applications discuss knowledge-based treatment planning and automation, AI-based treatment planning, prediction of radiotherapy toxicity, radiomics in cancer prognostication and treatment response, and the use of AI for mitigation of error propagation. The sixth section elucidates two critical issues in the clinical adoption: ethical issues and the evaluation of AI as a transformative technology.
Recent advances witness the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance the efficacy and specificity, the control and guidance of drug carriers in vasculature has become crucial. Current bottlenecks in the optimal design of drug carrying particles are the lack of knowledge about the transport of particles, adhesion on endothelium wall and subsequent internalization into diseased cells. To study the transport and adhesion of particle in vasculature, the authors have made great efforts to numerically investigate the dynamic and adhesive motions of particles in the blood flow. This book discusses the recent achievements from the establishment of fundamental physical problem to development of multiscale model, and finally large scale simulations for understanding transport of particle-based drug carriers in blood flow.
With the rapid growth of new evidence from astronomy, space science and biology that supports the theory of life as a cosmic rather than terrestrial phenomenon, this book discusses a set of crucial data and pictures showing that life is still arriving at our planet. Although it could spark controversy among the most hardened sceptics this book will have an important role in shaping future science in this area.
This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales - molecular, cellular, and tissue levels - sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.
Nanomedicine is a developing field, which includes different disciplines such as material science, chemistry, engineering and medicine devoted to the design, synthesis and construction of high-tech nanostructures. The ability of these structures to have their chemical and physical properties tuned by structural modification, has allowed their use in drug delivery systems, gene therapy delivery, and various types of theranostic approaches. Colloidal noble metal nanoparticles and other nanostructures have many therapeutic and diagnostic applications. The concept of drug targeting as a magic bullet has led to much research in chemical modification to design and optimize the binding to targeted receptors. It is important to understand the precise relationship between the drug and the carrier and its ability to target specific tissues, and pathogens to make an efficient drug delivery system. This book covers advances based on different drug delivery systems: polymeric and hyper branched nanomaterials, carbon-based nanomaterials, nature-inspired nanomaterials, and pathogen-based carriers.
NMR spectroscopy has found a wide range of applications in life sciences over recent decades. Providing a comprehensive amalgamation of the scattered knowledge of how to apply high-resolution NMR techniques to biomolecular systems, this book will break down the conventional stereotypes in the use of NMR for structural studies. The major focus is on novel approaches in NMR which deal with the functional interface of either protein-protein interactions or protein-lipid interactions. Bridging the gaps between structural and functional studies, the Editors believe a thorough compilation of these studies will open an entirely new dimension of understanding of crucial functional motifs. This in turn will be helpful for future applications into drug design or better understanding of systems. The book will appeal to NMR practitioners in industry and academia who are looking for a comprehensive understanding of the possibilities of applying high-resolution NMR spectroscopic techniques in probing biomolecular interactions.
This two volume set introduces the up-to-date high-tech applications of Aggregation-Induced Emission (AIE) luminogens in biosensing, bioimaging, and biomedicine. The 2nd volume presents the applications of AIE materials in biomedicine, including the utilizations in biomedical polymers, organic nanoprobes, photosensitizer, photothermal agents, AIEgens-based delivery systems, etc. It is an essential reference for materials scientists, chemists, physicists and biological chemists.
The arena of sport is filled with marvelous performances and feats that, at times, seem almost beyond belief. As curious onlookers, we often wonder whether or not athletes will reach certain peaks and what determines their limits of athletic performance. Science, with its emphasis on theoretical development and experimental results, is uniquely equipped to answer these kinds of questions. Over the past two decades, I have been asked innumerable questions related to how science can provide these kinds of insights. Science in the Arena is written as an outgrowth of those interactions with the primary goal of communicating useful and understandable scientific explanations of athletic performance.
The new field of physical biology fuses biology and physics. New technologies have allowed researchers to observe the inner workings of the living cell, one cell at a time. With an abundance of new data collected on individual cells, including observations of individual molecules and their interactions, researchers are developing a quantitative, physics-based understanding of life at the molecular level. They are building detailed models of how cells use molecular circuits to gather and process information, signal to each other, manage noise and variability, and adapt to their environment. This book narrows down the scope of physical biology by focusing on the microbial cell. It explores the physical phenomena of noise, feedback, and variability that arise in the cellular information-processing circuits used by bacteria. It looks at the microbe from a physics perspective, to ask how the cell optimizes its function to live within the constraints of physics. It introduces a physical and information based -- as opposed to microbiological -- perspective on communication and signaling between microbes. The book is aimed at non-expert scientists who wish to understand some of the most important emerging themes of physical biology, and to see how they help us to understand the most basic forms of life.
Biophotonic diagnostics/biomedical spectroscopy can revolutionise the medical environment by providing a responsive and objective diagnostic environment. This book aims to explain the fundamentals of the physical techniques used combined with the particular requirements of analysing medical/clinical samples as a resource for any interested party. In addition, it will show the potential of this field for the future of medical science and act as a driver for translation across many different biological problems/questions.
Open microfluidics, the study of microflows having a boundary with surrounding air, encompasses different aspects such as paper or thread-based microfluidics, droplet microfluidics and open-channel microfluidics. Open-channel microflow is a flow at the micro-scale, guided by solid structures, and having at least a free boundary (with air or vapor) other than the advancing meniscus. This book is devoted to the study of open-channel microfluidics which (contrary to paper or thread or droplet microfluidics) is still very sparsely documented, but bears many new applications in biology, biotechnology, medicine, material and space sciences. Capillarity being the principal force triggering an open microflow, the principles of capillarity are first recalled. The onset of open-channel microflow is next analyzed and the fundamental notion of generalized Cassie angle (the apparent contact angle which accounts for the presence of air) is presented. The theory of the dynamics of open-channel microflows is then developed, using the notion of averaged friction length which accounts for the presence of air along the boundaries of the flow domain. Different channel morphologies are studied and geometrical features such as valves and capillary pumps are examined. An introduction to two-phase open-channel microflows is also presented showing that immiscible plugs can be transported by an open-channel flow. Finally, a selection of interesting applications in the domains of space, materials, medicine and biology is presented, showing the potentialities of open-channel microfluidics.
Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
This book covers some fundamental aspects and frontiers in non-equilibrium physics and soft matter research. Apart from the basic knowledge on nonlinear statistic physics, dynamics, computer simulations, and main approaches and emerging systems in soft matter research, particular attention is devoted to new conceptual flexible functional materials and the enriching areas, such as silk meso-molecular materials, molecular gels, liquid crystals, flexible electronics and new types of catalysis, etc. One of the main characteristics of this book is to start with the structure formation dynamics and the correlation between the structures and macroscopic performance. This lays down the foundation for the mesoscopic materials design and functionalization. The book is intended for upper undergraduate students, graduate students, and researchers who are interested in soft matter researches. As one of main references, the basic principles and technologies of computer simulations and experimental methods adopted in soft matter research are also explained. Illustrations and tables are included in this book to improve the readability, and examples and exercises are added to help understanding.
For the past decade or more, much of cell biology research has been focused on determining the key molecules involved in different cellular processes, an analytical problem that has been amenable to biochemical and genetic approaches. Now, we face an integrative problem of understanding how all of these molecules work together to produce living cells, a challenge that requires using quantitative approaches to model the complex interactions within a cell, and testing those models with careful quantitative measurements. This book is an introductory overview of the various approaches, methods, techniques, and models employed in quantitative cell biology, which are reviewed in greater detail in the other volumes in this e-book series. Particular emphasis is placed on the goals and purpose of quantitative analysis and modeling, and the special challenges that cell biology holds for understanding life at the physical level.
|
You may like...
Nanomaterials in Biomedical Application…
Alexander D. Pogrebnjak, Maksym Pogorielov, …
Hardcover
R4,258
Discovery Miles 42 580
Nanoparticle (NP)-Based Delivery…
Navid Rabiee, Mahsa Kiani, …
Hardcover
R1,389
Discovery Miles 13 890
Nanomaterials for Luminescent Devices…
Swapna S Nair, Reji Philip
Hardcover
R3,490
Discovery Miles 34 900
Biomedical Optical Sensors…
Richard De La Rue, Hans Peter Herzig, …
Hardcover
R4,246
Discovery Miles 42 460
|