![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences
Natural and constructed wetlands play a very important role within the landscape and their ecological services are highly valuable. Water management, including flood water retention, biomass production, carbon sequestration, wastewater treatment and as a biodiversity source are among the most important ecological services of wetlands. In order to provide these services, wetlands need to be properly evaluated, protected and maintained. This book provides results of the latest research in wetland science around the world. Chapters deal with such topics as the use of constructed wetlands for treatment of various types of wastewater, use of constructed wetlands in agroforestry, wetland hydrology and evapotranspiration, the effect of wetlands on landscape temperature, and chemical properties of wetland soils.
Edited by Jean-Claude Kader and Michel Delseny and supported by an
international Editorial Board, " Advances in Botanical Research"
publishes in-depth and up-to-date reviews on a wide range of topics
in plant sciences. Currently in its 48th volume, the series
features a wide range of reviews by recognized experts on all
aspects of plant genetics, biochemistry, cell biology, molecular
biology, physiology and ecology. This eclectic volume features six
reviews on cutting-edge topics of interest to postgraduates and
researchers alike.
In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other's survival and also provide for sustenance in stressful environment. Agro-ecosystems of many regions around the globe are affected by multi-stress. Major limiting factors affecting the agricultural productivity worldwide are environmental stresses. Apart from decreasing yield they introduce devastating impact on plant growth as well. Plants battle with various kind of stresses with the help of symbiotic association with the microbes in the rhizosphere. Naturally existing plant-microbe interaction facilitates survival of plants under these stressful conditions. Rhizosphere consists of many groups of microbes, plant growth-promoting bacteria (PGPB) is one such group of microbes which assist plants in coping with multiple stresses and in plant growth as well. These microbes help in stress physiology of the plants and can be extremely useful in solving agricultural as well food security problems. The proposed book is split into two parts, with an aim to provide comprehensive description and highlight a holistic approach. It elucidates various mechanisms in rhizosphere of nutrient management, stress tolerance and enhanced crop productivity. The book discusses rhizospheric flora and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Both volumes of the book addresses fundamentals, applications as well as research trends and new prospects of agricultural sustainability. Volume 2: Nutrient Management and Crop Improvement, contains chapters which cover a broad overview of plant growth promoting activities of microbes. This proposed book also highlights the contribution of nitrogen, phosphorus, potassium, iron and zinc-solubilizing microbes from rhizospheric soil to develop efficient indigenous microbial consortia to enhance the food and nutritional security. With the given content and layout the proposed book will be an all-inclusive collection of information, which will be useful for students, academicians, researchers working in the field of rhizospheric mechanisms, agricultural microbiology, soil microbiology, biotechnology, agronomy and sustainable agriculture and also for policy makers in the area of food security and sustainable agriculture. It will be of special interest to both academics and professionals working in the fields of microbiology, soil microbiology, biotechnology and agronomy, as well as the plant protection sciences. Timely, this edited and research book provides an essential and comprehensive source of material from basic to advance findings on microbes and their role in agricultural and soil sustainability.
Dr. Harris has played a major role in the development of this
organism as a model system. Her previous version of the
"Chlamydomonas Sourcebook" which published in 1989, has been a
classic in the field and is considered required reading for anyone
working with this organism. This latest edition has been expanded
to include three volumes providing molecular techniques, analysis
of the recently sequenced genome, and reviews of the current status
of the diverse fields in which Chlamydomonas is used as a model
organism. Methods for Chlamydomonas research and best practices for
applications in research, including methods for culture,
preservation of cultures, preparation of media, lists of inhibitors
and other additives to culture media, are included. Additions to
this volume also include help with common laboratory problems such
as contamination, student demonstrations, and properties of
particular strains and mutants.
Volume 3 reviews virtually everything that is known about cell
motility and behavior in Chlamydomonas. World experts in each area
focus on mitosis and cytokinesis; flagellar assembly and motility;
intraflagellar transport; dynein; the structure and function of
centrioles/basal bodies and their associated structures; ciliary
signaling; mating and gamete fusion; photobehaviors; and
Chlamydomonas as a model for understanding human diseases of the
cilium. The volume is richly illustrated and is supplemented by a
website containing both classic and previously unpublished videos
of cell motility in Chlamydomonas. A unique and especially valuable
feature is the inclusion of tables listing the known proteins (with
NCBI accession numbers) for each structure discussed, and the known
mutations that affect each structure and process. Because
Chlamydomonas has been the premier model for investigating the
function and behavior of cilia and flagella, the chapters summarize
the current state of knowledge in these areas as it applies to all
ciliated organisms. Thus, this volume will be an essential source
for all students and researchers interested in cell motility.
Chloroplasts are vital for life as we know it. At the leaf cell level, it is common knowledge that a chloroplast interacts with its surroundings - but this knowledge is often limited to the benefits of oxygenic photosynthesis and that chloroplasts provide reduced carbon, nitrogen and sulphur. This book presents the intricate interplay between chloroplasts and their immediate and more distant environments. The topic is explored in chapters covering aspects of evolution, the chloroplast/cytoplasm barrier, transport, division, motility and bidirectional signalling. Taken together, the contributed chapters provide an exciting insight into the complexity of how chloroplast functions are related to cellular and plant-level functions. The recent rapid advances in the presented research areas, largely made possible by the development of molecular techniques and genetic screens of an increasing number of plant model systems, make this interaction a topical issue.
The Rosaceae Family is represented by approximately 3,000 species of diverse plants, primarily con?ned to temperate climates. The family has a rich variety of architectural forms and contains herbaceous, tree and shrub species. Many family members are readily recognizable because of their edible seasonal fruits that are prized for their unique ?avors, colors and nutritious properties (e.g. apple, str- berry, raspberry, pear, cherry, plum, apricot, pear), as well as familiar ornamentals (e.g. roses) and nuts (e.g. almonds). Today's rosaceous cultivars have been derived from centuries of careful sel- tion and breeding, using a palette of some of evolution's most curious creations. The careful sculpting that has transformed the germplasm was not trivial, as several of the most coveted fruit species maintain complicated genomes-in some cases among the most complex of cultivated plants (e.g. strawberry). Other species in the family are represented by large perennial tree crops that exhibit substantial juven- ity phases, posing a barrier to standard breeding and genetic analyses. Yet, today's superiorcultivarsfeaturerobustgrowth,substantialyieldsandresistancetocommon biotic and abiotic stresses; traits fostered by human intervention. When the hurdles to ef?cient cultivation, breeding and selection are considered, the quality and qu- tity of rosaceous plant products derived from traditional breeding techniques is little short of amazing.
This edited book details the plant-assisted remediation methods, which involves the interaction of plant roots with associated rhizospheric microorganisms for the remediation of soil and water contaminated with high levels of heavy metals, pesticides, radionuclides, agricultural by-products, municipal wastes, industrial solvents, petroleum hydrocarbons, organic compounds, and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil, water, and air removal. This book covers state-of-the-art approaches in phytoremediation contributed by leading and eminent scientists from across the world. Phytoremediation approaches for environmental sustainability dealing the readers with a cutting-edge of multidisciplinary understanding in the principal and practical approaches of phytoremediation from laboratory research to field application. This book is of interest to researchers, teachers, environmental scientists, environmental engineers, environmentalists, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of environmental microbiology, biotechnology, eco-toxicology, environmental remediation, waste management, and environmental sciences as well as the general audience.
The common names of plants often cause difficulties for translators or those engaged in international studies. Although used because they are easier for non-scientists to remember than Latin or Linnean names, one species may have several common names or one common name may be used for several species. The problem is greater for weed scientists because the confusion over common names can lead to misunderstandings over control measures or the importance of weed species. The proposal to list the common names of weeds in the European languages was made in 1972 by the Joint Panel of the Evaluation of Herbicides of the European Plant Protection Organisation, and the work continued by the Working Group on Education and Training of the European Weed Research Society. The result of their labours appears in two volumes. The first is Elsevier's Dictionary of Weeds of Western Europe which was published in 1982, since when it has been a valuable source of information on the common names and importance of weed species in the countries of Western Europe. Its companion volume is this new Dictionary of Weeds of Eastern Europe. Although several books exist which give common names of plants, there are none which have the range of languages covered in these two volumes or provide information on the importance of weed species. The new dictionary will undoubtedly prove to be as welcome and as useful as its predecessor to translators, weed/crop protection scientists, botanists, ecologists, and others.
Traditional medicinal knowledge, especially the use of ethnomedicinal plants in developing countries, has been passed down for generations. Today, however, scientists are poised to combine traditional medicinal plants and modern drug discoveries to further develop essential products that have followed the leads of indigenous cures used for centuries. Ethnomedicinal Plant Use and Practice in Traditional Medicine provides emerging research exploring the theoretical and practical aspects of indigenous knowledge and therapeutic potential within ethnobotany. Featuring coverage on a broad range of topics such as drug discovery, traditional knowledge, and herbal medicine, this book is ideally designed for doctors, healers, medical professionals, ethnobotanists, naturalists, academicians, researchers, and students interested in current research on the medical use and applications of natural-based resources.
Oxygen (O ) appeared in significant amounts in the Earth's atmosphere over 2. 2 2 billion years ago, largely due to the evolution of photosynthesis by cyanobacteria (Halliwell 2006). The O molecule is a free radical, as it has two impaired electrons 2 that have the same spin quantum number. This spin restriction makes O prefer to 2 accept its electrons one at a time, leading to the generation of the so-called reactive oxygen species (ROS). The chemical nature of these species dictates that they can create damage in cells. This has contributed to the creation of the "oxidative stress" concept; in this view, ROS are unavoidable toxic products of O metabolism and 2 aerobic organisms have evolved antioxidant defences to protect against this tox- ity (Halliwell 1981; Fridovich 1998). Indeed, even in present-day plants, which are full of antioxidants, much of the protein synthetic activity of chloroplasts is used to replace oxidatively damaged D1 and other proteins (Halliwell 2006). Yet, the use of the "oxidative stress" term implies that ROS exert their effects through indiscriminate widespread inactivation of cellular functions. In this context, ROS must not be able to react with lipids, proteins or nucleic acids in order to avoid any damage to vital cellular components. However, genetic evidence has suggested that, in planta, purely physicoche- cal damage may be more limited than previously thought (Foyer and Noctor 2005).
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).
Covering an area of over 130 million km2 spanning the Mediterranean, equator and tropics, the African continent features a spectacular geographic diversity. Consequently, it is characterised by extremely variable climatic, edaphic and ecological conditions, associated with a wide range of natural vegetation and wildlife, as well as human population density, crops and livestock. In this book, Henry Le Houerou presents his bioclimatic and biogeographic classification of Africa. The extensive data provide the basis for comparisons between various African regions, and with regions on other continents such as Latin America or the Indian subcontinent. The results constitute a rational basis for national, regional and sub-regional rural development planning, and for agricultural research dealing with aspects such as plant and animal introductions, the extrapolation or interpolation of experimental or developmental findings, and ecosystems dynamics. Possible problems of applications are also examined."
Drug discovery originating in Africa has the potential to provide significantly improved treatment of endemic diseases such as malaria, tuberculosis and HIV/AIDS. This book critically reviews the current status of drug discovery research and development in Africa, for diseases that are a major threat to the health of people living in Africa. Compiled by leading African and international experts, this book presents the science and strategies of modern drug discovery. It explores how the use of natural products and traditional medicines can benefit from conventional drug discovery approaches, and proposes solutions to current technological, infrastructural, human resources, and economic challenges, which are presented when attempting to engage in full-scale drug discovery. Topics addressed are varied; from African medicinal plants to marine bioprospecting, pharmacogenetics and the use of nanotechnology. This book brings together for the first time a collection of strategies and techniques that need to be considered when developing drugs in an African setting. It is an unprecedented and truly international effort, highlighting the remarkable effort made so far in the area of drug discovery research by African scientists, and scientists from other parts of the world working on African health problems.
This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts in the field. This book is an up-to-date overview of current progress in mycorrhiza and association with plant productivity and environmental sustainability. The result is a must hands-on guide, ideally suited for agri-biotechnology, soil biology, fungal biology including mycorrhiza and stress management, academia and researchers. The topic of this book is particularly relevant to researchers involved in mycorrhiza, especially to food security and environmental protection. Mycorrhizas are symbioses between fungi and the roots of higher plants. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition and the diversity of natural ecosystems are frequently dependent upon the pre sence and activity of mycorrhizas. The biotechnological application of mycorrhizas is expected to promote the production of food while maintaining ecologically and economically sustainable production systems.
Micropropagation is a reliable technology applied commercially worldwide for large-scale plant multiplication, germplasm conservation, pathogen elimination, genetic manipulations and supply of selected plants. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants, well recognised researchers in the field compile step-wise protocols for rapid plant multiplication of economically-important horticultural species. The book contains 35 chapters, divided into four major sections. The first three sections (Section A, B and C) contain 29 micropropagation protocols of selected fruit and nut species, indoor and outdoor ornamental plants, cut flowers, and vegetables. In addition to the detailed protocols of in vitro shoot initiation, proliferation, root induction and acclimatization, chapters also include detailed information on medium preparation, explant selection and preparation. The six chapters of Section D cover specific reviews on pivotal topics, such as in vitro rejuvenation, synthetic seed technology, thermotherapy and meristem culture in banana, genetic transformation of pineapple, flower color somaclonal variation in torenia, and cryotherapy of horticultural crops. Moreover, as a part of the highly successful Methods in Molecular Biology series, chapters include introductions to the respective topic, lists of necessary materials, notes, and illustrative photos. Comprehensive and well-written, Protocols for Micropropagation of Selected Economically-Important Horticultural Plants offers a useful resource for horticulturists, researchers, commercial companies, plant propagators, biotechnologists and students interested in micropropagation.
The book provides basic knowledge in mycorrhizal ecology, knitted with novel conceptual frameworks and contemporary perspectives, especially in the context of global change. In a fast changing world wherein anthropogenic climate change, biological invasions, deforestation, desertification, and frequent droughts have become routine hard realities, the contents of this book urge readers to rethink basic notions of setting and accomplishing objectives in mycorrhizal research to make sense vis-a-vis contemporary challenges. In this book, a global perspective of mycorrhizal diversity and distribution is provided, followed by some insights into the impact of various global change elements such as climate change, plant invasion, and extreme environmental conditions on mycorrhizas and the role of these mutualists in turn to help their host plants to withstand such novel selection pressures. Special attention here is given to the interesting, but largely neglected, topics such as the role of mycorrhizas in ecological restoration of degraded environments and mycorrhizal status of aquatic plants. The basic idea is to unify various topical areas in mycorrhizal science in an integrated framework. This book can be used by the undergraduate and graduate level students studying mycorrhizal symbioses in the context of current ecological applications. The materials in this book will benefit biological scientists actively involved in research on mycorrhizal ecology and global environmental change. Besides, the contents of the book could be of special interest to restoration ecologists and biodiversity managers. "
Plant taxonomy is an ancient discipline facing new challenges with the current availability of a vast array of molecular approaches which allow reliable genealogy-based classifications. Although the primary focus of plant taxonomy is on the delimitation of species, molecular approaches also provide a better understanding of evolutionary processes, a particularly important issue for some taxonomic complex groups."Molecular Plant Taxonomy: Methods and Protocols"describes laboratory protocols based on the use of nucleic acids and chromosomes for plant taxonomy, as well as guidelines for phylogenetic analysis of molecular data. Experts in the field also contribute review and application chapters that will encourage the reader to develop an integrative taxonomy approach, combining nucleic acid and cytogenetic data together with other crucial information (taxonomy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany), which will help not only to best circumvent species delimitation but also to resolve the evolutionary processes in play.Written in the successful"Methods in Molecular Biology"series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Molecular Plant Taxonomy: Methods and Protocols"seeks to provide conceptual as well as technical guidelines to plant taxonomists and geneticists."
This volume presents a collection of tools currently used for the characterization of rust, the host plant wheat, and their interactions. This book is divided into five parts: Parts I and II discuss advanced techniques for characterizing rust pathogens in rust surveillance, genotyping, and molecular pathogenicity; Part III describes protocols for genetic analysis of rust resistance; Part IV covers methods on rust resistance gene cloning; and Part V talks about the isolation and screening of bacterial endophytes as biocontrol agents for rust disease management. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Wheat Rust Disease: Methods and Protocols is a valuable resource for both established and novel wheat rust researchers and also the plant science and microbial research community.
Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. Metal toxicity causes multiple direct and indirect effects in plants that concern practically all physiological functions. The main purpose of this book is to present comprehensive and concise information on recent advances in the field of metal transport and how genetic diversity affects heavy metal transport in plants. Other key futures of the book are related to metal toxicity and detoxification mechanisms, biochemical tools for HM remediation processes, molecular mechanisms for HM detoxification, how metallomics and metalloproteomics are affected by heavy metal stress in plants, and the role of ROS metabolism in the alleviation of heavy metals. Some chapters also focus on recent developments in the field of phytoremediation. Overall the book presents in-depth information and the most essential advances in the field of heavy metal toxicity in plants in recent years.
Plant-based medicines play an important role in all cultures, and have been indispensable in maintaining health and combating diseases. The identification of active principles and their molecular targets from traditional medicine provides an enormous opportunity for drug development. Using modern biotechnology, plants with specific chemical compositions can be mass propagated and genetically improved for the extraction of bulk active pharmaceuticals. Although there has been significant progress in the use of biotechnology, using tissue cultures and genetic transformation to investigate and alter pathways for the biosynthesis of target metabolites, there are many challenges involved in bringing plants from the laboratory to successful commercial cultivation. This book presents the latest advances in the development of medicinal drugs, including topics such as plant tissue cultures, secondary metabolite production, metabolomics, metabolic engineering, bioinformatics and future biotechnological directions.
The mystique of the rainforest has captured the imaginations of generations of young people, explorers, authors, and biologists. It is a delicate ecosystem whose myriad sounds and smells, whose vibrancy of life, is balanced by constant cycles of death and decay. It is a place of fierce competition where unusual partnerships are forged and creative survival strategies are the norm. In this book, you will meet the scientific pioneers who first attempted to quantify and understand the vast diversity of these tropical forests, as well as their successors, who utilize modern tools and technologies to dissect the chemical nature of rainforest interactions. This book provides a general background on biodiversity and the study of chemical ecology before moving into specific chemical examples of insect defenses and microbial communication. It finishes with first-hand accounts of the trials and tribulations of a canopy biology pioneer and a rainforest research novice, while assessing the state of modern tropical research, its importance to humanity, and the ecological, political, and ethical issues that need to be tackled in order to move the field forward.
This book highlights the implications of nanotechnology in plant sciences, particularly its potential to improve food and agricultural systems, through innovative, eco-friendly approaches, and as a result to increase plant productivity. Topics include various aspects of nanomaterials: biophysical and biochemical properties; methods of treatment, detection and quantification; methods of quantifying the uptake of nanomaterials and their translocation and accumulation in plants. In addition, the effects on plant growth and development, the role of nanoparticles in changes in gene and protein expression, and delivery of genetic materials for genetic improvement are discussed. It also explores how nanotechnology can improve plant protection and plant nutrition, and addresses concerns about using nanoparticles and their compliances. This book provides a comprehensive overview of the application potential of nanoparticles in plant science and serves as a valuable resource for students, teachers, researchers and professionals working on nanotechnology.
Crop production in greenhouses is a growing industry, especially in mild climates, and is very important for the population as a source of income and clean, fresh food. Greenhouses create optimal climate conditions for crop growth and protect crops from outside pests. At the same time greenhouse production increases water use efficiency and makes integrated production and protection (IPP) possible. This book provides technical instructions for practice (what to do and what not to do) and gives answers to the question: How to produce more clean crops and better quality with less water, less land and less pesticide. Suitable greenhouse constructions and their design, adapted to local climates in subtropical, tropical and arid regions and infrastructure conditions are presented. The necessary climate control measures - light transmittance, ventilation, cooling, heating, and CO2 enrichment - and physical measures for pest control, as well as methods for using solar energy to desalinate salty water are described. The results of theoretical research are transferred into methods for practical use, so that readers are equipped to solve their problems in practice as well as to get stimulation for further research and development. |
![]() ![]() You may like...
|