![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences
This book highlights the implications of nanotechnology in plant sciences, particularly its potential to improve food and agricultural systems, through innovative, eco-friendly approaches, and as a result to increase plant productivity. Topics include various aspects of nanomaterials: biophysical and biochemical properties; methods of treatment, detection and quantification; methods of quantifying the uptake of nanomaterials and their translocation and accumulation in plants. In addition, the effects on plant growth and development, the role of nanoparticles in changes in gene and protein expression, and delivery of genetic materials for genetic improvement are discussed. It also explores how nanotechnology can improve plant protection and plant nutrition, and addresses concerns about using nanoparticles and their compliances. This book provides a comprehensive overview of the application potential of nanoparticles in plant science and serves as a valuable resource for students, teachers, researchers and professionals working on nanotechnology.
Crop production in greenhouses is a growing industry, especially in mild climates, and is very important for the population as a source of income and clean, fresh food. Greenhouses create optimal climate conditions for crop growth and protect crops from outside pests. At the same time greenhouse production increases water use efficiency and makes integrated production and protection (IPP) possible. This book provides technical instructions for practice (what to do and what not to do) and gives answers to the question: How to produce more clean crops and better quality with less water, less land and less pesticide. Suitable greenhouse constructions and their design, adapted to local climates in subtropical, tropical and arid regions and infrastructure conditions are presented. The necessary climate control measures - light transmittance, ventilation, cooling, heating, and CO2 enrichment - and physical measures for pest control, as well as methods for using solar energy to desalinate salty water are described. The results of theoretical research are transferred into methods for practical use, so that readers are equipped to solve their problems in practice as well as to get stimulation for further research and development.
After the generation of genome sequence data from a wide variety of plants, databases are filled with sequence information of genes with no known biological function, and while bioinformatics tools can help analyze genome sequences and predict gene structures, experimental approaches to discover gene functions need to be widely implemented. In Plant Reverse Genetics: Methods and Protocols, leading researchers in the field describe cutting-edge methods, both high-throughput and genome-wide, involving the models Arabidopsis and rice as well as several other plants to provide comparative functional genomics information. With chapters on the analysis of high-throughput genome sequence data, the identification of non-coding RNA from sequence information, the comprehensive analysis of gene expression by microarrays, and metabolomic analysis, the thorough methods of the book are fully supported by scripts to aid their computational use. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters contain introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and essential, Plant Reverse Genetics: Methods and Protocols is an ideal guide for researchers seeking an understanding of how the complex web of plant genes work together in a systems biology view.
This volume examines the interrelated fields of food security, energy security and sustainable agriculture as the key to a stable global agricultural platform and is arranged in six parts. The first part is focused on policy considerations relating to food and energy security and sustainable agriculture. The authors from this part include Former Under Secretary of Agriculture Gale Buchanan, Former Under Secretary of Energy Raymond Orbach (Chapter 1), Stephen Hughes, Bryan Moser and William Gibbons (Chapter 2) and Thomas Redick (Chapter 3). Part II addresses soil and water, which are two of the key components in secure and sustainable food production. Authors from this part are Jerry Hatfield (Chapter 4) and Mahbub Alam, Sharon Megdal et al. (Chapter 5). The third part covers sustainable and secure food production specifically addressing genetically modified traits in Chapter 6 (James McWilliams) and omega-3 fatty acids in Chapter 7 (Jay Whelan et al.). Agronomic implications relative to food security and sustainable agriculture are described in Part IV. Authors include Ravi Sripada, Pradip Das et al. (Chapter 8), Duska Stojsin, Kevin Matson and Richard Leitz (Chapter 9) and S.H. Lee, David Clay and Sharon Clay (Chapter 10). International sustainable agriculture and food security is addressed in Part V with authors Jeff Vitale and John Greenplate (Chapter 11), Julie Borlaug et al. (Chapter 12) and Sylvester Oikeh et al. (Chapter 13). The final part covers the use of chemicals in sustainable agriculture and food/energy security with Leonard Gianessi and Ashley Williams communicating the role of herbicides and Harold Reetz emphasizing the importance of fertilizers both in maximizing crop yields to maintain a sustainable secure source for food production."
This edited volume provides insight into temperate fruits, with an emphasis on postharvest physiology, storage, packaging and technologies for maintaining fruit quality. Chapters are devoted to individual fruits and focus on fundamental issues such as methods for maintaining or enhancing quality, minimizing postharvest losses, and recommended technologies to boost demand. Contributions come from experts in the field, making this a key reference for all aspects of postharvest management of temperate fruits. The volume is unique in its focus on the biodiversity, nutritional and health benefits, and postharvest technologies for shelf life enhancement of temperate fruits. Contributing authors address the postharvest biology and technology of individual temperate fruits such as plum, cherry, peach, apricot, apple, pear, quince, loquat, kiwi, persimmon and berries. There has been tremendous growth in the research and development of new techniques to maintain the quality of temperate fruits from farm to table. Contributions from experts in the field cover these recent advances, providing up-to-date and relevant information for researchers, postharvest/fruit technologists, food scientists, postgraduate students, and others working in the industry.
This book includes contributions from scientists and representatives from government and non-governmental organisations working in the field of land management and use and on management of fires. The book is truly interdisciplinary and has both a research and application-oriented dimension. The list of topics includes sustainability and water management; sustainability and biodiversity conservation; the future sustainability of nature-based industries such as agriculture, mining, tourism, fisheries and forestry; sustainability, people and livelihoods; sustainability and landscapes planning; sustainability and land use planning; handling and managing forest fires. The papers are innovative and cross-cutting, and many have practice-based experiences. Also, this book, prepared by the Inter-University Sustainable Development Research Programme (IUSDRP) and the World Sustainable Development Research and Transfer Centre (WSD-RTC), reiterates the need to promote a sustainable use of land resources today.
This book highlights state-of-the-art research and practices for adaptation to climate change in food production systems (agriculture in particular) as observed in Japan and neighboring Asian countries. The main topics covered include the current scientific understanding of observed and projected climate change impacts on crop production and quality, modeling of autonomous and planned adaptation, and development of early warning and/or support systems for climate-related decision-making. Drawing on concrete real-world examples, the book provides readers with an essential overview of adaptation, from research to system development to practices, taking agriculture in Asia as the example. As such, it offers a valuable asset for all researchers and policymakers whose work involves adaptation planning, climate negotiations, and/or agricultural developments.
This book covers studies on the systematics of plant taxa and will include general vegetational aspects and ecological characteristics of plant life at altitudes above 1000 m. from different parts of the world. This volume also addresses how upcoming climate change scenarios will impact high altitude plant life. It presents case studies from the most important mountainous areas like the Himalayas, Caucasus and South America covering the countries like Malaysia, Sri Lanka, India, Nepal, Pakistan, Kirghizia, Georgia, Russia,Turkey, Indonesia, Malaysia and the Americas. The book will serve as an invaluable resource source undergraduates, graduate students, and researchers.
Volume 2 covers nitrogen fertilizer efficiency, acid tolerance of the legume symbiosis, fruit tree nutrition, rhizosphere pH change, iron deficiency in crop production, the effects of nutrient deficiences on seed production, the elemental composition of plants, and the role of potassium. The articles in this volume join together both the fundamental and the applied parts of this discipline. The editors' aim to make the reviews comprehensible to scientists in relevant disciplines, rather than purely to the specialist. The format of each volume is a small number of full-length reviews of important topics, plus an editorial which briefly mentions other rapidly developing topics that may therefore be reviewed in future volumes.
"Use of Microbes for the Alleviation of Soil Stresses, Volume 1" describes the most important details and advances related to the alleviation of soil stresses by soil microbes. Comprised of seven chapters, the book reviews the mechanisms by which plant growth promoting rhizobacteria (PGPR) alleviate plant growth under stress; the role of mycorrhizal fungi on the alleviation of drought stress in host plants; how PGPR may alleviate salinity stress on the growth of host plants; and the role of PGPR on the growth of the host plant under the stress of sub optimal root zone temperature. Written by experts in their respective fields, "Use of Microbes for the Alleviation of Soil Stresses, Volume 1 "is a comprehensive and valuable resource for researchers and students interested in the field of microbiology and soil stresses.
In spite of international agreements at the political level not much has changed since the late 1980s in terms of reducing the speed of destruction of original tropical environments. However, since the publication of the first edition ten years ago, international research efforts in physiological ecology of plants in the tropics has increased enormously in quantity and quality. In some fields advances were more substantial than in others. New approaches came up in remote sensing and at the other end of the scope in some areas molecular biology was particularly developed regarding ecological performance of tropical plants, e.g. in understanding the adaptation of resurrection plants to the extreme habitat of inselbergs. The wealth of new information made it necessary to break large chapters down into smaller ones. Tropical forests which occupy about half of the entire volume of the book were now arranged in 5 chapters covering structure and function under the influence of environmental cues and including epiphytes and mangroves as part of the tropical forest complex. Savannas were now treated in two chapters. Coastal salinas have been combined with a new section on the Brazilian restingas in a chapter on coastal sand plains.
The interactions between the plant, soil and microbes are complex in nature. Events may be antagonistic, mutualistic or synergistic, depending upon the types of microorganisms and their association with the plant and soil in question. Multi-trophic tactics can therefore be employed to nourish plants in various habitats and growth conditions. Understanding the mechanisms of these interactions is thus highly desired in order to utilize the knowledge in an ecofriendly and sustainable way. This holistic approach to crop improvement may not only resolve the upcoming food security issues, but also make the environment greener by reducing the chemical inputs. Plant, soil and microbe, Volume 1: Implications in Crop Science, along with the forthcoming Volume 2: Mechanisms and Molecular Interactions, provide detailed accounts of the exquisite and delicate balance between the three critical components of agronomy. Specifically, these two titles focus on the basis of nutrient exchange between the microorganisms and the host plants, the mechanism of disease protection and the recent molecular details emerged from studying this multi-tropic interaction. Together they aim to provide a solid foundation for the students, teachers, and researchers interested in soil microbiology, plant pathology, ecology and agronomy.
This volume describes different up-to-date methodological approaches, ranging from physiological assays to imaging and molecular techniques, to study a wide variety of plant responses to environmental cues. Environmental Responses in Plants: Methods and Protocols is divided into four sections: Tropisms, Photoperiodism and Circadian Rhythms, Abiotic Stress Responses, and Plant-Pathogen Interactions. The chapters in these sections include detailed protocols to investigate some of the many key biological processes underlying plant environmental responses, mostly in the model organism Arabidopsis thaliana, but also in Physcomitrella patens and in different crop species such as rice, potato, barley, or tomato. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Environmental Responses in Plants: Methods and Protocols, is a great resource for plant physiologists, biochemists, and cell and molecular scientists interested in this exciting and fast-growing research topic.
Recherches Chimiques sur la Vegetation was a seminal work in the development of the understanding of photosythesis and plant chemistry. The original publication, which was the first concise summation of the basics of plant nutrition, was a landmark in plant science. It was twice translated into German during the nineteenth century, but no English translation has been published. This translation will interest those in the plant, chemical, agricultural, and soil sciences, and the history of science, who find English more accessible than French or German and who wish to learn more about the early research on photosynthesis and plant science. A further note about the translation: This project is more than just a translation because it includes an extensive introduction as well as notes that provide explanations for archaic terminology and other background material. In the twentieth century, eminent photosynthesis researcher Eugene Rabinowitch described Recherches Chimiques sur la Vegetation as the first modern book on plant nutrition. Historian of chemistry Henry Leicester called the book a classic, noting that the first important generalization about biochemistry in the nineteenth century came from it. Plant physiologist P. E. Pilet stated that the book laid the foundations of a new science, phytochemistry. Soil scientist E. Walter Russell attributed to de Saussure the quantitative experimental method, which more than anything else made modern agricultural chemistry possible. Chemist Leonard K. Nash stated that de Saussure brought the studies of plant nutrition begun by Priestley, Ingen-Housz, and Senebier close to completion, finishing the basic experimental work and providing a convincing theoretical interpretation of the field, and also opened up new vistas of experiment and thought. In the two centuries since Recherches Chimiques sur la Vegetation was published, luminaries in various branches of science, including plant biology, chemistry, and soil science, have consistently praised it highly. In the nineteenth century, noted botanist Alphonse de Candolle and equally noted plant physiologist Julius von Sachs expressed great admiration for it. Although de Saussure's ideas were forgotten for a time, famed chemist Justus von Liebig, who invented artificial fertilizer, rediscovered them in the 1840s and brought them to the attention of the agricultural community, stressing their importance for increasing crop yields.
Playing a critical role in both influencing climate change and mitigating its impacts, the world's diverse wetlands have become one of the world's most threatened ecosystems as unsustainable land-use practices coupled with irrational use of water have already resulted in large-scale wetlands loss and degradation. To develop sound management and conservation schemes to assure wetlands sustainability in the long term requires long-term understanding of wetlands ecology. Yet until now, long-term interdisciplinary research into these systems has been limited to only a few systems from tropical or temperate climates (such as the Florida Everglades, and Czech biosphere reserve). This new book adds to the existing wetlands literature, providing a unique reference in basic and applied Mediterranean wetland ecology, based on results from long-term interdisciplinary research at the RAMSAR and UNESCO Biosphere site, of Las Tablas de Daimiel, Spain. Dating back to the early 1990s the research highlights changes in the biotic and abiotic environment in response to cumulative anthropogenic stressors, and provide guidance on applying this understand to sound management and conservation. With particular relevance to researchers dealing with semi-arid wetlands in the Mediterranean and elsewhere, as well as to resource managers, the book discusses the complexity of the interacting abiotic and biotic environment across different spatial and temporal scales and across various levels of biological hierarchy is highlighted, and reveals how management based on poor knowledge causes more damage than repair. The book will be of interest to researchers interested in freshwater ecology, hydrobotany, hydrology, geology, biogeochemistry, landscape ecology and environmental management.
Plant Secondary Metabolites provides reliable assays to meet the challenge of fulfilling the huge demand for feed. It details plant-animal interactions and presents methodologies that may also be used to determine plant secondary metabolites in human food. In addition, the volume contains methods for analysis of some important plant secondary metabolites, which are written in a recipe-like format designed for direct practical use.
Plant growth is of great economical and intellectual interest. Plants are the basis of our living environment, the production of our food and a myriad of plant-based natural products. Plant bio-mass is also becoming an important renewable energy resource. Agricultural plant cultivation and breeding programs have altered plant productivity and yield parameters extensively, yet the principles and underlying mechanisms are not well understood. At the cellular level, growth is the result of only two processes, cell division and cell expansion, but these two processes are controlled by intertwined signaling cascades and regulatory mechanisms forming complex regulatory networks. Ultimately this network is what plant scientists are trying to unravel. The sequencing of model and agronomically important plant genomes allows complete insight into the molecular components involved in each process. Methods to quantify the molecular changes, image growth processes and reconstruct growth regulatory networks are rapidly developing. This knowledge should help to elucidate key regulators and to design methods to engineer plant architecture and growth parameters for future human needs. This volume gives a comprehensive overview of what is known about plant growth regulation and growth restraints due to environmental conditions and should allow readers at all levels an entry into this exiting field of research.
The perception that civilization is crossing a period of Global Climatic Changes that can seriously threaten our lifestyle, along with energy security and the search for prosperity, are the main drivers that are pushing men to use more biomass as a source of energy. It will be crucial that such intent will include a large parcel of sustainability so that more renewable energy becomes available for populations. Because large amounts of energy are "hidden" in carbon polymers made by plants, notably carbohydrates, it is obvious that if technologies are developed to produce liquid fuels such as ethanol from carbohydrate polymers such as cellulose, men could significantly increase energy sustainability . This book reviews general aspects of biomass utilization for bioenergy production as well as strategies using biochemistry, molecular biology, chemistry and physics to disassemble plant cell walls. Recent discoveries of basic science under development in several laboratories in the world are reviewed by experts that have been intensively working with many aspects that will impact the development of the technology of production of cellulosic ethanol.
This volume presents a compelling collection of state-of-the-art work in algorithmic computational biology, honoring the legacy of Professor Bernard M.E. Moret in this field. Reflecting the wide-ranging influences of Prof. Moret's research, the coverage encompasses such areas as phylogenetic tree and network estimation, genome rearrangements, cancer phylogeny, species trees, divide-and-conquer strategies, and integer linear programming. Each self-contained chapter provides an introduction to a cutting-edge problem of particular computational and mathematical interest. Topics and features: addresses the challenges in developing accurate and efficient software for the NP-hard maximum likelihood phylogeny estimation problem; describes the inference of species trees, covering strategies to scale phylogeny estimation methods to large datasets, and the construction of taxonomic supertrees; discusses the inference of ultrametric distances from additive distance matrices, and the inference of ancestral genomes under genome rearrangement events; reviews different techniques for inferring evolutionary histories in cancer, from the use of chromosomal rearrangements to tumor phylogenetics approaches; examines problems in phylogenetic networks, including questions relating to discrete mathematics, and issues of statistical estimation; highlights how evolution can provide a framework within which to understand comparative and functional genomics; provides an introduction to Integer Linear Programming and its use in computational biology, including its use for solving the Traveling Salesman Problem. Offering an invaluable source of insights for computer scientists, applied mathematicians, and statisticians, this illuminating volume will also prove useful for graduate courses on computational biology and bioinformatics.
The Origin of Species is the landmark book that for better of worse put science and religion at odds. Very few people who have read this book and come away not believing in evolution. The detail of research is even by today's standards stunning; and the writing is still eminently readable. Second only to the Bible in its scope of influence, this book is a pertinent today as when it was first written. |
![]() ![]() You may like...
Advanced Materials - Proceedings of the…
Ivan A. Parinov, Shun-Hsyung Chang, …
Hardcover
R5,723
Discovery Miles 57 230
The Ecology of Large Mammals in Central…
Robert A. Garrott, Patrick J. White, …
Hardcover
R2,529
Discovery Miles 25 290
People For and Against Restricted or…
John B. Harer, Jeanne Harrell
Hardcover
R2,181
Discovery Miles 21 810
Leaders for a Movement - An Introduction…
P. Gayle Andrews, Vincent A. Jr Anfara
Hardcover
R3,239
Discovery Miles 32 390
Thermodynamics - Fundamental Principles…
Antonio Saggion, Rossella Faraldo, …
Hardcover
R2,706
Discovery Miles 27 060
|