![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Catalysis
The field of phase transfer catalysis is a tribute to the chemists involved in process development research. Phase transfer catalysis is a solution to numerous cost and yield problems encountered regularly in industrial laboratories. In fact, much of the early work in this area was conducted by industrial chemists although the work was not labelled phase transfer catalysis at the time. We certainly do not intend to minimize the contributions of academic chemists to this field, but it is an unalterable fact that much of the early understanding and many of the early advances came from industrial laboratories. A special tribute is due to Dr. Charles Starks of the Continental Oil Company. By the mid sixties, Starks had formulated the principles of phase transfer catalysis and had applied for patents on many reactions that others were later to examine in somewhat greater detail. His mechanistic model of phase transfer catalysis still stands up well today and is a model for much of the thinking in this area. It is fitting that Starks suggested the name "phase transfer catalysis" by which the whole field is now known. We wish to thank a number of people who have aided us in many ways in the preparation of this volume. We very much appreciate the helpful discussions and insights provided by Drs. Henry Stevens and Andrew Kaman of PPG Industries in Barberton, Ohio. We also thank Dr. L. A.
Metal-Ligand Interactions - Structure and Reactivity emphasizes the experimental determination of structure and dynamics, supported by the theoretical and computational approaches needed to establish the concepts and guide the experiments. Leading experts present masterly surveys of: clusters, inorganic complexes, surfaces, catalysis, ab initio theory, density functional theory, semiempirical methods, and dynamics. Besides the presentations of the fields of study themselves, the papers also bring out those aspects that impinge on, or could benefit from, progress in other disciplines. Refined in the fire of an interactive and stimulating conference, the papers presented here represent the state of the art of current research.
New Trends in Enzyme Catalysis and Biomimetic Chemical Reactions embraces modern areas of enzyme catalysis where other books in the field concentrate mainly on kinetic, bioorganic and biochemical aspects of the enzyme catalysis and do not cover biophysical and physicochemical problems. Topics covered include: -modern physical and kinetic methods of investigation,
There are only few topics in organometallic chemistry, which have stimulated research activities in as many areas, as transition-metal carbene (alkylidene) complexes. About 25 years after the first planned synthesis of a carbene complex in E.O. Fischer's laboratory in Munich the NATO Advanced Research Workshop on Transition-Metal Carbene Complexes was the first meeting which, brought together scientists from different disciplines to discuss inorganic, organic, theoretical structural catalysis-related aspects of metal carbene chemistry. The 70th birthday of Professor E.O. Fischer was a good occasion for this enterprise. The organizers of the meeting (K.D. Dotz, Marburg; F.R. KreiBl, Munchen; U. Schubert, Wurzburg) were encouraged by the fact that most of the leading scientists in this area were able to participate in the workshop. The very high standard of the contributions is reflected in this book, which contains papers from the majority of the participants. The Proceedings show the state of the art in metal carbene chemistry and will hopefully be a landmark in the development of this area of chemistry. Generous financial support for the workshop and for the preparation of this book was provided by the Scientific Affairs Division of NATO and some companies. The organizers also acknowledge the efforts of the staff of the Bildungs zentrum der Hans-Seidel-Stiftung in Wild bad Kreuth for creating a pleasant and stimulating atmosphere during the conference."
The origins of the petrochemical industry can be traced back to the 1920s when simple organic chemicals such as ethanol and isopropanol were first prepared on an industrial scale from by-products (ethylene and propylene) of oil refining. This oil-based petrochemical industry, with lower olefms and aromatics as the key building blocks, rapidly developed into the enormous industry it is today. A multitude of products that are indispensible to modern day society, from plastics to pharmaceuticals, are derived from oil and natural gas-based hydro carbons. The industry had its heyday in the '50s and '60s when predictions of future growth rates tended to be exponential curves. However, two developments that took place in the early '70s disturbed this simplistic and optimistic view of the future. Firstly, the publication of the report for the Cub of Rome on the 'Limits to Growth' emphasized the finite nature of non-renewable fossil fuel resources. Secondly, the Oil Crisis of 1973 emphasized the vulnerability of an energy and chemicals industry that is based largely on a single raw material."
Catalysts are now widely used in both laboratory and industrial-scale chemistry. Indeed, it is hard to find any complex synthesis or industrial process that does not, at some stage, utilize a catalytic reaction. The development of homogeneous transition metal catalysts on the laboratory scale has demonstrated that these systems can be far superior to the equivalent heterogeneous systems, at least in terms of selectivity. is an increasing interest in this field of research from both an Thus, there academic and industrial point of view. In connection with the rapid developments in this area, four universities from the E.E.C (Aachen, FRG; Liege, Belgium; Milan, Italy; and Lille, France) have collaborated to organise a series of seminars for high-level students and researchers. These meetings have been sponsored by the Commission of the E.E.C and state organizations. The most recent of these meetings was held in Lille in September 1985 and this book contains updated and expanded presentations of most of the lectures given there. These lectures are concerned with the field of homogeneous transition metal catalysis and its application to the synthesis of organic intermediates and fine chemicals from an academic and industrial viewpoint. The continuing petroleum crisis which began in the early 1970s has given rise to the need to develop new feedstocks for the chemical industry.
Over the past 20 years aqueous organometallic catalysis has found applications in small- scale organic synthesis in the laboratory, as well as in the industrial production of chemicals with a combined output close to one million tons per year. Aqueous/organic two-phase reactions allow easy product-catalyst separation and full catalyst recovery which mean clear benefits not only in economic but also in environmental and green chemistry contexts. Instead of putting together a series of expert reviews of specialized fields, this book attempts to give a comprehensive yet comprehensible description of the various catalytic transformations in aqueous systems as seen by an author who has been working on aqueous organometallic catalysis since its origin. Emphasis is put on the discussion of differences between related non-aqueous and aqueous processes due to the presence of water. The book will be of interest to experts and students working in catalysis, inorganic chemistry or organic synthesis, and may serve as a basis for advanced courses.
Heterogeneous catalysis provides the backbone of the world's chemical and oil industries. The innate complexity of practical catalytic systems suggests that useful progress should be achievable by investigating key aspects of catalysis by experimental studies on idealised model systems. Thin films and supported clusters are two promising types of model system that can be used for this purpose, since they mimic important aspects of the properties of practical dispersed catalysts. Similarly, appropriate theoretical studies of chemisorption and surface reaction clusters or extended slab systems can provide valuable information on the factors that underlie bonding and catalytic activity. This volume describes such experimental and theoretical approaches to the surface chemistry and catalytic behaviour of metals, metal oxides and metal/metal oxide systems. An introduction to the principles and main themes of heterogeneous catalysis is followed by detailed accounts of the application of modern experimental and theoretical techniques to fundamental problems. The application of advanced experimental methods is complemented by a full description of theoretical procedures, including Hartree-Fock, density functional and similar techniques. The relative merits of the various approaches are considered and directions for future progress are indicated.
The development of "high-tech" materials in contemporary industries is deeply related to a detailed understanding of specific surface properties of catalysts which make particular reactions possible. But this understanding presupposes that there exists a body of theory capable of explaining situations not easily accessible to experimental methods and of relating experimental findings among themselves and with theoretical constructs. For these reasons, theoretical developments in surface physics and surface chemistry of transition metal compounds have been of paramount importance in promoting progress in catalysis, electronic devices, corrosion, etc. Although a great variety of spectroscopic methods for analyzing solids and surfaces at molecular scale have been introduced in recent years, nevertheless, many questions about the adsorption sites and intermediates, the effect of promoters, the poisoning of active sites, the nature of segregation of impurities, the process of surface reconstruction, the mechanisms of reactions, etc. have remained unanswered simply because of the great complexity of surface phenomena. It is in this sense that quantum mechanical method- combined with experimental data - may shed some light on the microscopic properties of new surface materials.
Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.
Soluble catalysts are used extensively in many branches of chemistry and are indeed a vital constituent of many natural processes. They find wide application throughout the chemical industry where they assist in the production of several million tonnes of chemicals each year. Since homogeneous systems, especially those incorporating transition metals, often function effectively under milder conditions than their heterogeneous counterparts, they are becoming increasingly important at a time when the chemical industry in particular, and society in general, is seeking ways of conserving energy and of making the best possible use of available resources. My principal objective in- writing this book is to engender sufficient enthusiasm for, and knowledge of, the subject in the reader that he or she will be encouraged to begin, or continue, to make their own contribution to advancing our knowledge of homogeneous catalysis. After attempting to acquaint the reader with some of the ground rules I have tried to describe the present scope, and the future potential, of this fascinating field of chemistry by drawing both on academic and on industrial data sources. This approach stems from a personal conviction that future progress could be considerably hastened by a more meaningful dialogue between chemists working both in industrial and in academic research institutions. Wherever possible, examples of the commercial application of homogeneous catalyst systems have been included and no attempt has been made in any way to disguise the many unresolved questions and exciting challenges which still pervade this rapidly developing area.
Some years ago, I agreed to contribute a volume to the Academic Press 'Organo metallic Chemistry' series - the metals to be covered were rhodium and iridium. Initially, my plan was to discuss both the fundamental organometallic chemistry and applications in organic synthesis. When the first draft of the manuscript was complete, it was apparent that I had exceeded my allowance of pages by a huge amount. It was then that I decided that the catalysis section warranted separate treatment. I am grateful to Reidel for agreeing to publish this volume on Homogeneous Catalysis with Compounds of Rhodium and Iridium as part of their 'Catalysis by Metal Complexes' series. The material I had for the original Academic Press project covered the litera ture to the end of 1978. I decided to update this to the end of 1982 with a few key references from 1983. It is some measure of the rate of progress in this field that the number of references almost doubled during this revision."
Well tailored metal catalysts are catalysts of the new generation resulting from scientific development at the boundary between homogeneous and hetero- geneous chemistry. The main factors involved in making tailored metal catalysts are not those of traditional impregnation in which the chemistry is in general unknown and ill-defined, or of simple ion exchange which involves long-range forces with little control on the local structure through definite and special bond direction. Tailored Metal Catalysts thus has a rather different emphasis from normal review publications in the field of catalysis. Here we concentrate more on the distinct surface chemistry and catalytic properties of important established materials with well-characterized active structures or precursors, although at the same time providing a systematic presentation of relevant data. Many pioneering works have been undertaken in the field of tailored metal catalysts since the early research on polymer-attached homogeneous metal complexes by the British Petroleum Company Ltd. and the Mobil Oil Corpora- tion around 1969; transition metal complexes attached on polymers by Grubbs (1971), Heinemann (1971), Manassen (1971), Pittman (1971), Bursian et al. (1972), Kagan (1973), Bailar (1974); transition metal complexes attached on inorganic oxides by Allum et al. (1972), Ballard (1973), Candlin and Thomas (1974), Murrell (1974), Yermakov (1974); metal carbonyls/polymers by Moffat (1970); metal carbonyls/inorganic oxides by Parkyns (1965), Davie et al. (1969), Banks et al. (1969), Howe (1973), Burwell (1975); metal carbonyl clusters/ polymers by Colhnan (1972); metal carbonyl clusters/inorganic oxides by Robertson and Webb (1974), Anderson (1974), Smith et al. (1975).
This volume in the acclaimed series Modern Aspects of Electrochemistry starts with a dedication to the late Professor Brian Conway who for 50 years helped to guide this series to its current prominence. The remainder of the volume is then devoted to the following topics: PEM fuel cells; the use of graphs in electrochemical reaction newtworks; nanomaterials in Lithium-ion batteries; direct methanolf fuel cells (two chapters); fuel cell catalyst layers. The book is for electrochemists, electrochemical engineers, fuel cell workers and energy generation workers.
Continuously increasing oil prices, a dwindling supply of petroleum, and the existence of extensive reserves of biomass, especially of coal, have given rise to a growing interest in generating CO/H from these sources. Catalytic reactions can 2 convert CO/H mixtures to useful hydrocarbons or hydrocarbon intermediates. 2 There is little doubt that petroleum will remain the backbone of the organic chemical industry for many years to come, yet there is great opportunity for CO as an alternative feedstock at times when it is needed. The loosely defined body of chemistry and technology contained in these areas of development has become known as C 1 chemistry, embracing many C 1 building blocks such as CH , CO/H , CO, CH OH, CO and HCN; still emphasis 4 2 3 2 rests on carbon monoxide. Academic research laboratories, oil and chemical companies are in the vanguard of C 1 chemistry. The Japanese Ministry of International Trade and Industry is sponsoring a seven-year program of 14 major chemical companies in C 1 chemistry aimed at developing new technology for making basic chemicals from CO and H2 . It is likely that C 1 chemistry will develop slowly but persistently and the future holds great potential.
Since the first application of dendrimers in catalysis in the mid 1990s, this field has advanced rapidly. As a consequence, catalytically active dendrimers have emerged as a class of molecular catalysts that has substantially enriched the field of homogeneous (and in part heterogeneous) catalysis. A general survey of transition metal dendrimer catalysts and the way they have developed is followed by in-depth discussions of dendritic transition metal catalysis based on non-covalent catalyst-support interaction and an overview of the rapidly growing field of stereoselective dendrimer catalysis. The development of dendrimer-encapsulated bimetallic nanoparticles has provided the interface with heterogeneous colloid catalysis. As cheaper and readily accessible alternatives to regular dendrimers, hyperbranched polymers are increasingly being used as catalyst platforms. These topics are complemented by a review of metallodendritic exoreptors for the redox recognition of oxo-anions and halides.
Bioorganometallic Chemistry has become a mature area of science and is comprehensively covered by leading experts in this book. Naturally occuring bioorganometallic complexes, such as vitamin B12 and recently discovered iron and nickel hydrogenases, including a possible role of the latter in the geochemical theory of the origin of life, are considered. The possible formation of carbene complexes of cytochrome P450 enzymes in various metabolisms of xenobiotics is also discussed. The bioorganometallic chemistry is considered to provide not only organometallic receptors such as polynuclear organometallic macrocycles for biologically interesting molecules but also ferrocene-peptide bioconjugates giving a peptidomimetic basis for protein folding. The medicinal properties of organometallic compounds are reviewed, with notable applications in the treatment and diagnosis of cancer and in the treatment of viral, fungal, bacterial and parasitic infections. Therefore the reader will get a balanced view of this rapidly developing and promising area.
Palladium is a remarkable metal. In particular, organopalladium chemistry has made remarkable progress over the last 30 years. That progress is still continuing, without any end in sight. This book presents a number of accounts and reviews on the novel Pd-catalyzed reactions discovered mainly in the last five years. The book covers Pd-catalyzed reactions that are new entirely different from the more standard ones. Topics such as new reactions involving ss-carbon elimination and formation of palladacycles as key reactions, cross-coupling of unactivated alkyl electrophiles with organometallic compounds, arylation via C-H bond cleavage, Pd/norbornene-catalyzed aromatic functionalizations, three-component cyclizations of allenes, use of N-heterocyclic carbenes as ligands, asymmetric reactions catalyzed by Pd(II) compounds such as Lewis acids, cycloadditions of arynes and alkynes, and nucleophilic attack by Pd species are surveyed in detail by researchers who have made important contributions to these fields. The book addresses graduate students majoring in organic synthesis and researchers in academic and industrial institutes."
Carbonylation reactions are of major importance in both organic
and industrial chemistry. Due to the availability, price and
reactivity pattern, carbon monoxide is becoming a more and more
important building block for fine and bulk chemicals. The major
reaction types of carbon monoxide are comprehensively discussed by
leading experts from academia and industry. The authors highlight
important carbonylation reactions such as hydroformylation,
alkoxy-carbonylations, co/olefin-copolymerization, Pauson-Khand
reactions and others. They illustrate applications in organic
synthesis and give industrial examples.
The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.
Biological nitrogen fixation provides more than 50% of the total annual input of the essential element nitrogen to world agriculture. Thus, it is of immense agronomic importance and critical to food supplies, particularly in developing countries. This book, with chapters authored by internationally renowned experts, provides a comprehensive and detailed account of the fascinating history of the process - including the surprising discoveries of molybdenum-independent nitrogenases and superoxide-dependent nitrogenase; a review of Man's attempts to emulate the biological process - most successfully with the commercially dominant Haber-Bosch process; and the current state of the understanding art with respect to the enzymes - called nitrogenases - responsible for biological nitrogen fixation. The initial chapters use a historical approach to the biological and industrial processes, followed by an overview of assay methodologies. The next set of chapters focuses on the classical enzyme, the molybdenum nitrogenase, and details its biosynthesis, structure, composition, and mechanism of action as well as detailing both how variants of its two component proteins are constructed by recombinant DNA technology and how computational techniques are being applied. The sophisticated chemical modelling of the metal-containing clusters in the enzyme is reviewed next, followed by a description of the two molybdenum-independent nitrogenases - first, the vanadium-containing enzyme and then the iron-only nitrogenase - together with some thoughts as to why they exist Then follows an up-to-date treatment of the clearly "non-classical" properties of the superoxide-dependent nitrogenase, which more closely resembles molybdenum-containing hydroxylases and related enzymes, like nitrate reductase, that it does the other nitrogenases. Each chapter contains an extensive list of references. This book is the self-contained first volume of a comprehensive seven-volume series. No other available work provides the up-to-date and in-depth coverage of this series and this volume. This book is intended to serve as an indispensable reference work for all scientists working in this area, including agriculture and the closely related metals-in-biology area; to assist students to enter this challenging area of research; and to provide science administrators easy access to vital relevant information.
This unique book, drawing on the author 's lifetime experience, critically evaluates the extensive literature on the field of Metal-Catalysed Reactions of Hydrocarbons. Emphasis is placed on reaction mechanisms involving hydrogenation, hydrogenolysis, skeletal and positional isomerisation, and exchange reactions. The motivation for fundamental research in heterogeneous catalysis is to identify the physicochemical characteristics of active centres for the reaction being studied, to learn how these may be modified or manipulated to improve the desired behavior of the catalyst, and to recognize and control those aspects of the catalyst's structure that limit its overall performance. By restricting the subject of the book to hydrocarbons, Bond has progressively developed the subject matter to include areas of importance both to researchers and to those working in the industry.
Heterogeneous catalysis is a fascinating and complex subject of utmost importance in the present day. Its immense technological and economical importance and the inherent complexity of the catalytic phenomena have stimulated theoretical and experimental studies by a broad spectrum of scientists, including chemists, physicists, chemical engineers, and material scientists. Computational and theoretical techniques are now having a major impact in this field. This book aims to illustrate and discuss the subject of heterogeneous catalysis and to show the current capabilities of the theoretical and computational methods for studying the various steps (diffusion, adsorption, chemical reaction) of heterogeneous catalytic process involving zeolites, metal oxides, and transition metal surfaces. The book covers: the use of techniques of computational chemistry to simulate zeolites, metallic and bimetallic surfaces, and oxide-supported metals; the impact of simulation methods on the understanding of the diffusion and adsorption of molecules and cations within the pores of zeolites, and also on the adsorption of molecules on metal and metal-oxide surfaces; and the applications of quantum-mechanical methods to the study of the reaction mechanism and pathways of the adsorbed molecules. This book is recommended primarily to scientists and graduate students conducting research in the fields of heterogeneous catalysis and surface science. It will also be valuable to advanced undergraduate students wishing to become acquainted with the latest developments in these exciting fields of research, and to experimentalists seeking theoretical support for interpreting their results.
Computational Modelling of Homogeneous Catalysis is an extensive collection of recent results on a wide array of catalytic processes. The chapters are, in most cases, authored by the researchers who have performed the calculations. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest, including: -olefin polymerization; This book facilitates understanding by experimental chemists in the field on what has already been accomplished and what can be expected from calculations in the near future. In addition, the book provides computational chemists with a first-hand knowledge on the state of the art in this exciting field. |
![]() ![]() You may like...
Sun, Sea, and Sound - Music and Tourism…
Timothy Rommen, Daniel T. Neely
Hardcover
R4,087
Discovery Miles 40 870
Pacific Climate Cultures - Living…
Tony Crook, Peter Rudiak-Gould
Hardcover
R3,385
Discovery Miles 33 850
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R2,141
Discovery Miles 21 410
|