Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
Progress in Heterocyclic Chemistry (PHC), Volume 28 is an annual review series commissioned by the International Society of Heterocyclic Chemistry (ISHC). Volumes in the series contain both highlights of the previous year's literature on heterocyclic chemistry and articles on new and developing topics of particular interest to heterocyclic chemists. The highlight chapters in Volume 28 are all written by leading researchers and constitute a systematic survey of the important original material reported in the literature of heterocyclic chemistry during 2015. Additional articles in this volume include Semi-conjugated Heteroaromatic Rings and beta-Lactam Chemistry. As with previous volumes in the series, Volume 28 will enable academic and industrial chemists, and advanced students, to keep abreast of developments in heterocyclic chemistry in a convenient way.
Established in 1960, "Advances in Heterocyclic Chemistry" is the
definitive serial in the area-one of great importance to organic
chemists, polymer chemists, and many biological scientists. Written
by established authorities in the field, the comprehensive reviews
combine descriptive chemistry and mechanistic insight and yield an
understanding of how the chemistry drives the properties.
This book provides a comprehensive review of functional nanomaterials for electrochemical applications, presenting interesting examples of nanomaterials with different dimensions and their applications in electrochemical energy storage. It also discusses the synthesis of functional nanomaterials, including quantum dots; one-dimensional, two-dimensional and three-dimensional nanostructures; and advanced nanocomposites. Highlighting recent advances in current electrochemical energy storage hotpots: lithium batteries, lithium-ion batteries, sodium-ion batteries, other metal-ion batteries, halogen ion batteries, and metal-gas batteries, this book will appeal to readers in the various fields of chemistry, material science and engineering.
The continued greening of the energy sector, with inroads being made through numerous sources of materials that can produce energy, is the main focus of this, Green Chemical Processing, Volume 8. It includes contributions from area experts in widely different fields, all involved in energy production, and makes connections to the 12 Principles of Green Chemistry.
Acetylenic precursors are important reactants for creating carbon-based architectures via linkage reactions. While their capability of forming intermolecular bonds is well investigated in solution, very few systematic studies have been carried out to create alkyne-based nanostructures on metal substrates under ultra-high vacuum conditions. Synthesizing extended and regular carbon scaffolds requires a detailed knowledge of alkyne chemistry in order to control reaction pathways and limit unwanted side reactions. Using the bottom-up approach on metal surfaces, the authors establish protocols to fabricate regular architectures built up by the on-surface formation of selective organometallic and C-C bonds with thoughtfully designed alkyne-functionalized monomers. The structural and functional properties of the resulting organometallic and covalent nanostructures are characterized by means of scanning tunneling microscopy. The results open up new perspectives in the fields of heterogeneous catalysis and the on-surface synthesis of functional interfaces under mild reaction conditions.
This book provides detailed information on the electrochemistry of technetium compounds. After a brief physico-chemical characterization of this element, it presents the comparative chemistry of technetium, manganese and rhenium. Particular attention is paid to the stability, disproportionation, comproportionation, hydrolysis and polymerization reactions of technetium ions and their influence on the observed redox systems. The electrochemical properties of both inorganic as well as organic technetium species in aqueous and non-aqueous solutions are also discussed. The respective chapters cover the whole spectrum of topics related to the application of technetium in nuclear medicine, electrochemistry of technetium in spent nuclear fuel (including corrosion properties of technetium alloys), and detecting trace amounts of technetium with the aid of electrochemical methods. Providing readers with information not easily obtained in any other single source, the book will appeal to researchers working in nuclear chemistry, nuclear medicine or the nuclear industry.
The novel coronavirus 2019 (COVID-19) has caused a serious global pandemic in just eight months. Nearly every country and territory in the world has been affected by the virus. The virulence and infection rate of the virus are profound, and has required extreme social distancing measures across the globe in order to prevent overwhelming the healthcare services and hospitals. COVID-19 appears to have the greatest effects on elderly individuals and those who have co-morbid diseases, such as heart disease, asthma, and diabetes. As the peak begins to slow in many countries, the death rates remain high amidst justified fears of a second wave. A rapid worldwide mobilization has begun to identify effective treatments and develop vaccines. This new volume will increase readers' understanding of the ongoing COVID-19 pandemic through a series of chapters that address these concerns. Leading experts will discuss the effects of the virus in cases of co-morbidities, new treatment approaches, mental health aspects of the pandemic, and convey the results of survey studies. The book will be an excellent resource for researchers studying virology, metabolic diseases, respiratory disorders, and clinical scientists, physicians, drug companies, and healthcare services and workers.
The work in your hand contains three main chapters, covering the chemistry of the condensed phase in the atmosphere, first, the different forms of atmospheric waters (precipitation, fog and clouds, dew), and secondly dust, now mostly termed particulate matter and, more scientifically, atmospheric aerosol. A third section treats the gases in the atmosphere. An introductory chapter covers the roots of the term atmospheric chemistry in its relations to chemistry in general and biogeochemistry as the chemistry of the climate system. Furthermore, a brief overview of understanding chemical reactions in aqueous and gaseous phase is given. It is my aim to pay respect to all persons who studied the substances in the air, to those who made small, and to them who made giant contributions for the progress in atmospheric science. I'm not a historian who is able to present the past from a true perspective of their time - this also would not be my aim. If possible, however, I try to interpret the past - almost limited to experimental fi ndings in the nineteenth century - through current values, without dismissal of the problems and ideas of earlier scientists. In this way it is possible to draw some ideas on the historical chemical state of the air. Hence, I name this voyage critical. However, nowhere in this book it is my attention to express my criticism to colleagues and scientifi c ancestors. Great scientists too were subject to errors; doing science consists from the permanent loop observation, interpretation, conclusion, and again testing against new observation. If this volume can contribute more than to be "a nice story" on atmospheric chemistry, then hopefully it inspires the reader to more critical reading of scientifi c publications, and, not to forget the older one.
Established in 1960, Advances in Heterocyclic Chemistry is the
definitive serial in the area-one of great importance to organic
chemists, polymer chemists, and many biological scientists. Written
by established authorities in the field, the comprehensive reviews
combine descriptive chemistry and mechanistic insight and yield an
understanding of how the chemistry drives the properties.
Advancing the experimental study of superfluids relies on increasingly sophisticated techniques. We develop and demonstrate the loading of Bose-Einstein condensates (BECs) into nearly arbitrary trapping potentials, with a resolution improved by a factor of seven when compared to reported systems. These advanced control techniques have since been adopted by several cold atoms labs around the world. How this BEC system was used to study 2D superfluid dynamics is described. In particular, negative temperature vortex states in a two-dimensional quantum fluid were observed. These states were first predicted by Lars Onsager 70 years ago and have significance to 2D turbulence in quantum and classical fluids, long-range interacting systems, and defect dynamics in high-energy physics. These experiments have established dilute-gas BECs as the prototypical system for the experimental study of point vortices and their nonequilibrium dynamics. We also developed a new approach to superfluid circuitry based on classical acoustic circuits, demonstrating its conceptual and quantitative superiority over previous lumped-element models. This has established foundational principles of superfluid circuitry that will impact the design of future transport experiments and new generation quantum devices, such as atomtronics circuits and superfluid sensors.
This book describes rubber nanocomposites and their applications in the automobile sector. Newly developed nanofibres and nanofinished textiles, with their novel characteristics and various applications in next-generation automobiles, are also discussed. Lastly, a comprehensive evaluation and overview of the impact of nanotechnology on the textiles in automobile industries are presented.
This monograph covers the most relevant applications of chemometrics in electrochemistry with special emphasis on electroanalytical chemistry. It reviews the use of chemometric methods for exploratory data analysis, experimental design and optimization, calibration, model identification, and experts systems. The book also provides a brief introduction to the fundamentals of the main chemometric methods and offers examples of data treatment for calibration and model identification. Due to the comprehensive coverage, this book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the area of electroanalysis and electrochemical sensors.
Advances in Energy, Environment and Chemical Engineering collects papers resulting from the conference on Energy, Environment and Chemical Engineering (AEECE 2022), Dali, China, 24-26 June, 2022. The primary goal is to promote research and developmental activities in energy technology, environment engineering and chemical engineering. Moreover, it aims to promote scientific information interchange between scholars from the top universities, business associations, research centers and high-tech enterprises working all around the world. The conference conducts in-depth exchanges and discussions on relevant topics such as energy engineering, environment technology and advanced chemical technology, aiming to provide an academic and technical communication platform for scholars and engineers engaged in scientific research and engineering practice in the field of saving technologies, environmental chemistry, clean production and so on. By sharing the research status of scientific research achievements and cutting-edge technologies, it helps scholars and engineers all over the world comprehend the academic development trend and broaden research ideas. So as to strengthen international academic research, academic topics exchange and discussion, and promote the industrialization cooperation of academic achievements.
This book systematically reviews the history of lead-free piezoelectric materials, including the latest research. It also addresses a number of important issues, such as new types of materials prepared in a multitude of sizes, structural and physical properties, and potential applications for high-performance devices. Further, it examines in detail the state of the art in lead-free piezoelectric materials, focusing on the pathways to modify different structures and achieve enhanced physical properties and new functional behavior. Lastly, it discusses the prospects for potential future developments in lead-free piezoelectric materials across disciplines and for multifunctional applications. Given its breadth of coverage, the book offers a comprehensive resource for graduate students, academic researchers, development scientists, materials producers, device designers and applications engineers who are working on or are interested in advanced lead-free piezoelectric materials.
An all-in-one, comprehensive take on matter and its phase properties In Phases of Matter and Their Transitions, accomplished materials scientist Dr. Gijsbertus de With delivers an accessible textbook for advanced students in the molecular sciences. It offers a balanced and self-contained treatment of the thermodynamic and structural aspects of phases and the transitions between them, covering solids, liquids, gases and their interfaces. The book lays the groundwork to describe particles and their interactions from the perspective of classical and quantum mechanics and compares phenomenological and statistical thermodynamics. It also examines materials with special properties, like glasses, liquid crystals, and ferroelectrics. The author has included an extensive appendix with a guide to the mathematics and theoretical models employed in this resource. Readers will also find: Thorough introductions to classical and quantum mechanics, intermolecular interactions, and continuum mechanics Comprehensive explorations of thermodynamics, gases, liquids, and solids Practical discussions of surfaces, including their general aspects for solids and liquids Fulsome treatments of discontinuous and continuous transitions, including discussions of irreversibility and the return to equilibrium Perfect for advanced students in chemistry and physics, Phases of Matter and Their Transitions will also earn a place in the libraries of students of materials science.
The extended and revised edition of this textbook provides essential information for a comprehensive upper-level graduate course on the crystalline growth of semiconductor heterostructures. Heteroepitaxy is the basis of today's advanced electronic and optoelectronic devices, and it is considered one of the most important fields in materials research and nanotechnology. The book discusses the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and it describes the major growth techniques: metalorganic vapor-phase epitaxy, molecular-beam epitaxy, and liquid-phase epitaxy. It also examines in detail cubic and hexagonal semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures, and processes during nucleation and growth. Requiring only minimal knowledge of solid-state physics, it provides natural sciences, materials science and electrical engineering students and their lecturers elementary introductions to the theory and practice of epitaxial growth, supported by references and over 300 detailed illustrations. In this second edition, many topics have been extended and treated in more detail, e.g. in situ growth monitoring, application of surfactants, properties of dislocations and defects in organic crystals, and special growth techniques like vapor-liquid-solid growth of nanowires and selective-area epitaxy.
This book covers newly emerging two-dimensional nanomaterials which have been recently used for the purpose of water purification. It focuses on the synthesis methods of 2D materials and answers how scientists/engineers/nanotechnologist/environmentalists could use these materials for fabricating new separation membranes and most probably making commercially feasible technology. The chapters are written by a collection of international experts ensuring a broad view of each topic. The book will be of interest to experienced researchers as well as young scientists looking for an introduction into 2D materials-based cross-disciplinary research. |
You may like...
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R4,782
Discovery Miles 47 820
Building and Maintaining Award-Winning…
Matthew J. Mio, Mark a. Benvenuto
Hardcover
R3,964
Discovery Miles 39 640
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,426
Discovery Miles 54 260
Sustainability in the Chemistry…
Catherine Middlecamp, Andrew Jorgensen
Hardcover
R5,412
Discovery Miles 54 120
|