Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry
This book pioneers a novel approach to investigate the effects of pressure on fission tracks, a geological problem that has remained unsolved for 60 years. While conventional techniques to study fission tracks were limited in precision, this book overcomes such issues by using state-of-the-art synchrotron-based x-ray scattering; a technique initially developed for applications in material science and biomedical research. The book provides an overview of the theory and application of small angle x-ray scattering (SAXS) on cylindrical ion tracks, including in-situ SAXS on ion tracks with simultaneous increases in temperature and pressure. As such it demonstrates a degree of characterisation normally not achievable with in-situ techniques. Further, it compares SAXS with small angle neutron scattering (SANS). This book has led to a range of publications and attracted the interest of the geological and material science communities. Daniel Schauries has been awarded several prizes for this research, including the Graduate Student Award of the Materials Research Society.
Wheat Quality for Improving Processing and Human Health brings together an international group of leading wheat scientists to outline highly relevant and diverse aspects and the latest advances in understanding of the world's most consumed cereal. Topics covered include LMW glutenins, starch-related proteins, and the impact of processing on composition and consumer health. Individual chapters focus on important factors such as FODMAPs, protein structure, dough viscoelasticity and fumonisins. The environmental effects on allergen content are comprehensively covered, as are phenolic compounds and molecular markers. The major quality screening tools and genetic resources are reviewed in depth. Gluten is a major focus of this work with chapters dedicated to health effects, analytical methods and standards, proteomics and mutant proteins. Starting in 2015, wheat quality scientists from across the globe have united to develop the Expert Working Group for Improving Wheat Quality for Processing and Health under the umbrella of the Wheat Initiative. This joint effort provides a framework to establish strategic research and organisation priorities for wheat research at the international level in both developed and developing countries. This Expert Working Group aims to maintain and improve wheat quality for processing and health under varying environmental conditions. The Group focuses on a broad range of wheat quality issues including seed proteins, carbohydrates, nutrition quality and micronutrient content, grain processing and food safety. Bioactive compounds are also considered, both those with negative effects such as allergens and mycotoxins, and those with positive effects such as antioxidants and fibre. The Group also works in the development of germplasm sets and other tools that promote wheat quality research. Wheat quality specialists working on the wheat value chain, and nutritionists will find this book a useful resource to increase and update their knowledge of wheat quality, nutrition and health issues.
In this book, the author provides expert analysis on naturally occurring iridoids, their chemistry and their distribution in plants and insects. Particular attention is given to the pharmacology of iridoids and their prospective applications in pharmaceutical and agricultural industries. Iridoids are found in a wide variety of plants and some insects, and they are structurally derived from monoterpenoid natural products. In the first two chapters of this book, the author describes the iridoids classification, occurrence and distribution in plants and insects. The following chapters cover different chromatographic and spectroscopic techniques that can be used to identify and quantify iridoids in herbal formulations, and also the biosynthesis of iridoids, in which the reader will discover a metabolomics and transcriptomics analysis to identify the genes involved in the biosynthesis. The final chapters provide insights on several pharmacological activities of iridoids, their physiological role in insects, pharmacokinetics in mammals, insects and microorganisms, and their applications in medicine and agriculture. This book will engage students and researchers interested in the chemistry of natural products, and it will also appeal to medicinal chemists and practitioners working in the design of new herbal drugs with bioactive pure iridoids.
This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors' previous volume "Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces," presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.
The generally accepted definitions of acids and bases together with
the generalized definition for the solvent system introduced by the
author for the description of both molecular and ionic solvents are
discussed. The oxobasicity index introduced as a measure of
relative oxoacidic properties of ionic melts (pIL) and methods of
its determination are presented. Moreover, the oxoacidity scales of
ionic melts based on alkali metal halides at different temperatures
are constructed. The sequential addition method (SAM), proposed by
the author to investigate the effect of oxide particle size on
oxide solubilities is presented.
Established in 1960, Advances in Heterocyclic Chemistry is the
definitive serial in the area one of great importance to organic
chemists, polymer chemists, and many biological scientists. Written
by established authorities in the field, the comprehensive reviews
combine descriptive chemistry and mechanistic insight and yield an
understanding of how the chemistry drives the properties.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This well-established textbook on biocatalysis provides a basis for undergraduate and graduate courses in modern organic chemistry, as well as a condensed introduction into this field. After a basic introduction into the use of biocatalysts-principles of stereoselective transformations, enzyme properties and kinetics-the different types of reactions are explained according to the 'reaction principle', such as hydrolysis, reduction, oxidation, C-C bond formation, etc. Special techniques, such as the use of enzymes in organic solvents, immobilization techniques, artificial enzymes and the design of cascade-reactions are treated in a separate section. A final chapter deals with the basic rules for the safe and practical handling of biocatalysts. The use of biocatalysts, employed either as isolated enzymes or whole microbial cells, offers a remarkable arsenal of highly selective transformations for state-of-the-art synthetic organic chemistry. Over the last two decades, this methodology has become an indispensable tool for asymmetric synthesis, not only at the academic level, but also on an industrial scale. In this 7th edition new topics have been introduced which include alcohol and amine oxidases, amine dehydrogenases, imine reductases, haloalkane dehalogenases, ATP-independent phosphorylation, Michael-additions and cascade reactions. This new edition also emphasizes the use of enzymes in industrial biotransformations with practical examples.
In 1945, Vannevar Bush, the engineer who designed the world's most powerful analog computers and the official responsible for U.S. scientific research and development during WWII, published an essay in which he predicted the development of a new kind of computing machine he called Memex. Today, computers in millions of offices and homes perform tasks that closely resemble the ideas that Bush proposed. For many people in the fields of computer and information science, Bush's Memex has been the prototype of the personal computer, and the first design for a machine to help people think and manage information. Yet, with all its renown, Memex is largely misunderstood. In From Memex to Hypertext, all of Bush's writings about Memex have been collected for the first time. Surrounding Bush's essays are chapters by historians and leading figures in the computer science research community telling the story of how the idea of Memex was developed and how Bush's writings have influenced today's research agenda in hypertext, multimedia, and artificial intelligence.
This book on the Laser Crystallization of Silicon reviews the
latest experimental and theoretical studies in the field. It has
been written by recognised global authorities and covers the most
recent phenomena related to the laser crystallization process and
the properties of the resulting polycrystalline silicon.
The "Advances in Inorganic Chemistry "presents timely and
informative summaries of the current progress in a variety of
subject areas within inorganic chemistry, ranging from
bio-inorganic to solid state studies. This acclaimed serial
features reviews written by experts in the field and serves as an
indispensable reference to advanced researchers. Each volume
contains an index, and each chapter is fully referenced.
This is the sixteenth annual volume of Progress in Heterocyclic
Chemistry, and covers the literature published during 2003 on most
of the important heterocyclic ring systems.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. "Nonequilibrium Thermodynamics, 3rd edition" emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems.
Features twenty-five chapter contributions from an international array of distinguished academics based in Asia, Eastern and Western Europe, Russia, and the USA. This multi-author contributed volume provides an up-to-date and authoritative overview of cutting-edge themes involving the thermal analysis, applied solid-state physics, micro- and nano-crystallinity of selected solids and their macro- and microscopic thermal properties. Distinctive chapters featured in the book include, among others, calorimetry time scales from days to microseconds, glass transition phenomena, kinetics of non-isothermal processes, thermal inertia and temperature gradients, thermodynamics of nanomaterials, self-organization, significance of temperature and entropy. Advanced undergraduates, postgraduates and researchers working in the field of thermal analysis, thermophysical measurements and calorimetry will find this contributed volume invaluable. This is the third volume of the triptych volumes on thermal behaviour of materials; the previous two receiving thousand of downloads guaranteeing their worldwide impact.
The book introduces fundamentals of 3D printing with light, photoinitiating system for 3D printing as well as resins. Plenty of applications, trends and prospects are also discussed, which make the book an essential reference for both scientists and industrial engineers in the research fields of photochemistry, polymer chemistry, rapid prototyping and photopolymerization.
Techniques of solid state nuclear magnetic resonance (NMR)
spectroscopy are constantly being extended to a more diverse range
of materials, pressing into service an ever-expanding range of
nuclides including some previously considered too intractable to
provide usable results. At the same time, new developments in both
hardware and software are being introduced and refined. This book
covers the most important of these new developments.
Exam Board: CCEA Level: A-level Subject: Chemistry First Teaching: September 2016 First Exam: June 2018 Reinforce students' understanding throughout their course; clear topic summaries with sample questions and answers will improve exam technique to achieve higher grades Written by examiners and teachers, Student Guides: * Help students identify what they need to know with a concise summary of the topics examined in the AS and A-level specification * Consolidate understanding with exam tips and knowledge check questions * Provide opportunities to improve exam technique with sample graded answers to exam-style questions * Develop independent learning and research skills * Provide the content for generating individual revision notes
Part I is a supplement to the EMSL Cincinnati publication "Methods for the Determination of Metals in Environmental Samples" and was prepared to revise and place in the Environmental Montioring Management Council (EMMC) format certain spectrochemical methods used for metals. Part II, the EMSL-Cincinnati publication "Methods for the Determination of Inorganic Substances in Environmental Samples" was prepared as the continuation of an initiative to gather together a compendium of standardized laboratory analytical methods.
This book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields. An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes. * Connects innovative material performance to the flexibility of multimodal polymer design processes; * Provides a comprehensive description of the polymerization process from the atomic level to the macroscale; * Presents a polyhedric view of multimodal polymer production, including structure, property, and processing relationships, and the development of new materials.
This volume reviews the drinking water treatments in which AOPs display a high application potential. Firstly it reveals the typical supply sources and limitations of conventional technologies and critically reviews natural organic matter characterization and removal techniques, focusing mainly on AOP treatments. It then explores using AOPs for simultaneous inactivation/disinfection of several types of microorganisms, including highly resistant Cryptosporidium protozoa. Lastly, it discusses relevant miscellaneous topics, like the most promising AOP solid catalysts, the regime change of Fenton-like processes toward continuous reactors, the application of chemometrics for process optimization, the impact on disinfection byproducts and the tracing of toxicity during AOP treatments. This work is a useful reference for researchers and students involved in water technologies, including analytical and environmental chemistry, chemical and environmental engineering, toxicology, biotechnology, and related fields. It is intended to encourage industrial and public-health scientists and decision-makers to accelerate the application of AOPs as technological alternatives for the improvement of drinking water treatment plants.
This book is an overview of ESIS Technical Committee 4's activities
since the mid-1980s. A wide range of tests is described and the
numerous authors is a reflection of the wide and enthusiastic
support we have had.
This thesis reports on essential experimental work in the field of novel two-dimensional (2D) atomic crystals beyond graphene. It especially describes three new 2D crystal materials, namely germanene, hafnene, and monolayer PtSe2 fabricated experimentally for the first time, using an ultra-high vacuum molecular beam epitaxy (UHV-MBE) system. Multiple characterization techniques, including scanning tunneling microscope (STM), low energy electron diffraction (LEED), scanning transmission electron microscope (STEM), and angle-resolved photoemission spectroscopy (ARPES), combined with theoretical studies reveal the materials' atomic and electronic structures, which allows the author to further investigate their physical properties and potential applications. In addition, a new epitaxial growth method for transition metal dichalcogenides involving direct selenization of metal supports is developed. These studies represent a significant step forward in expanding the family of 2D crystal materials and exploring their application potentials in future nanotechnology and related areas. |
You may like...
Controlled/Living Radical Polymerization
Krzysztof Matyjaszewski
Hardcover
R2,958
Discovery Miles 29 580
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,418
Discovery Miles 54 180
Chemistry as a Second Language…
Charity Flener Lovitt, Paul Kelter
Hardcover
R2,684
Discovery Miles 26 840
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,409
Discovery Miles 54 090
Building and Maintaining Award-Winning…
Matthew J. Mio, Mark a. Benvenuto
Hardcover
R3,964
Discovery Miles 39 640
Assessing Exposures and Reducing Risks…
James N. Seiber, Robert I. Krieger, …
Hardcover
R2,010
Discovery Miles 20 100
Integrating Information Literacy into…
Charity Lovitt, Kristen Shuyler, …
Hardcover
R4,793
Discovery Miles 47 930
|