![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry
This book provides a penetrating and comprehensive description of energy selected reactions from a theoretical as well as experimental view. Three major aspects of unimolecular reactions involving the preparation of the reactants in selected energy states, the rate of dissociation of the activated molecule, and the partitioning of the excess energy among the final products, are fully discussed with the aid of 175 illustrations and over 1,000 references, most from the recent literature. Examples of both neutral and ionic reactions are presented. Many of the difficult topics are discussed at several levels of sophistication to allow access by novices as well as experts. Among the topics covered for the first time in monograph form is a discussion of highly excited vibrational/rotational states and intramolecular vibrational energy redistribution. Problems associated with the application of RRKM theory are discussed with the aid of experimental examples. Detailed comparisons are also made between different statistical models of unimolecular decomposition. Both quantum and classical models not based on statistical assumptions are described. Finally, a chapter devoted to the theory of product energy distribution includes the application of phase space theory to the dissociation of small and large clusters. The work will be welcomed as a valuable resource by practicing researchers and graduate students in physical chemistry, and those involved in the study of chemical reaction dynamics.
This book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields. An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes. * Connects innovative material performance to the flexibility of multimodal polymer design processes; * Provides a comprehensive description of the polymerization process from the atomic level to the macroscale; * Presents a polyhedric view of multimodal polymer production, including structure, property, and processing relationships, and the development of new materials.
Volume 6 Reviews in Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd This Series Brings together Respected Experts in the Field of Computer-Aided Molecular Research. Computational Chemistry is Increasingly used in Conjunction with Organic, Inorganic, Medicinal, Biological, Physical, and Analytical Chemistry, Biotechnology, Materials Science, and Chemical Physics. This Volume Examines Quantum Chemistry of Solvated Molecules, Molecular Mechanics of Inorganics and Organometallics, Modeling of Polymers, Technology of Massively Parallel Computing, and Productivity of Modeling Software. A Guide to Force Field Parameters and a New Software Compendium Round out This Volume. -From Reviews of the Series The Book Transfers a Working Knowledge of Existing Computational Methods and Programs to an Interested Reader and Potential user. Structural Chemistry It Can Be Recommended for Everyone Who Wants to Learn About the Present State of Development in Computational Chemistry. Angewandte Chemie, International Edition in English
This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
This edited, multi-author volume contains selected, peer-reviewed contributions based on the presentations given at the 21th International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXI), held in Vancouver, Canada, in July 2016. This book is primarily aimed at scholars, researchers and graduate students working at universities and scientific laboratories and interested in the structure, properties, dynamics and spectroscopy of atoms, molecules, biological systems and condensed matter.
The book introduces fundamentals of 3D printing with light, photoinitiating system for 3D printing as well as resins. Plenty of applications, trends and prospects are also discussed, which make the book an essential reference for both scientists and industrial engineers in the research fields of photochemistry, polymer chemistry, rapid prototyping and photopolymerization.
This book outlines the current status of the environment in the Republic of Adygea in Russia. The book assesses the environmental conditions, ecological state, climate and vegetation change, anthropogenic loads to soil, water and atmosphere as well as highlighting the potential of water resources, renewable energy and development of tourism, agriculture and industry in this region. It also presents the mechanisms of legal, ecological and economic regulation and environmental insurance in the Republic of Adygea. This book introduces the Republic of Adygea to readers who are not familiar with the Republic and its beautiful landscapes, history and people. It offers a valuable source of information for a broad readership, from students and scientists interested in environmental sciences, to policymakers and practitioners working in the fields of environmental policy and management.
This first book to cover different injection techniques not only provides a comprehensive overview of methodologies and instrumentation, it also covers recent advances in flow method analysis, with an appendix listing additional databases, instrumentation and methods on the Internet. A definite must-have for every chemist working in this field.
This book offers comprehensive information on the developments and applications of the solid phase microextraction (SPME) technique. The first part of the book briefly introduces readers to the fundamentals of SPME, while subsequent sections describe the applications of SPME technique in detail, including environmental analysis (air, water, soil/sediments), food analysis (volatile/nonvolatile compounds), and bioanalysis (plants, animal tissues, body fluids). The advantages and future challenges of the SPME technique are also discussed. Including recent research advances and further developments of SPME, the book offers a practical reference guide and a valuable resource for researchers and users of SPME techniques. The target audience includes analytical chemists, environmental scientists, biological scientists, material scientists, and analysts, as well as students at universities/institutes in related fields. Dr. Gangfeng Ouyang is a Professor at the School of Chemistry and Chemical Engineering, Sun Yat-sen University, China. Dr. Ruifen Jiang is an Associate Professor at the School of Environment, Jinan University, China.
This book details zeolites, their structures and the parameters that influence their synthesis, providing a new and actual perspective of this field. Following this, the authors show different processes used to synthesize zeolites using residues, natural materials, and other eco-friendly materials such as raw powder glass, clays, aluminum cans, diatomites, rice ashes or coal ashes. Finally, this book gives the reader a wide range of different synthesis methods that they can be applied to several industrial processes.
Established in 1960, Advances in Heterocyclic Chemistry is the definitive serial in the area-one of great importance to organic chemists, polymer chemists, and many biological scientists. Written by established authorities in the field, the comprehensive reviews combine descriptive chemistry and mechanistic insight and yield an understanding of how the chemistry drives the properties.
This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
Sustainable Green Chemistry, the 1st volume of Green Chemical Processing, covers several key aspects of modern green processing. The scope of this volume goes beyond bio- and organic chemistry, highlighting the ecological and economic benefits of enhanced sustainability in such diverse fields as petrochemistry, metal production and wastewater treatment. The authors discuss recent progresses and challenges in the implementation of green chemical processes as well as their transfer from academia to industry and teaching at all levels. Selected successes in the greening of established processes and reactions are presented, including the use of switchable polarity solvents, actinide recovery using ionic liquids, and the removal of the ubiquitous bisphenol A molecule from effluent streams by phytodegradation.
Cellulose nanocrystals are being used more frequently as processing and nanofabrication techniques have advanced considerably. Cellulose Nanocrystals includes topics including Extraction and Fabrication Methodologies, Scale-Up Strategies and Life Cycle Assessment, Surface Modification Strategies, Nanocomposites, and Characterization and Testing Protocols. This book will appeal to physical, chemical and biological scientists as well as engineers.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 60 presents the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics.
This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information-for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity-FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader's convenience.
This thesis reports on essential experimental work in the field of novel two-dimensional (2D) atomic crystals beyond graphene. It especially describes three new 2D crystal materials, namely germanene, hafnene, and monolayer PtSe2 fabricated experimentally for the first time, using an ultra-high vacuum molecular beam epitaxy (UHV-MBE) system. Multiple characterization techniques, including scanning tunneling microscope (STM), low energy electron diffraction (LEED), scanning transmission electron microscope (STEM), and angle-resolved photoemission spectroscopy (ARPES), combined with theoretical studies reveal the materials' atomic and electronic structures, which allows the author to further investigate their physical properties and potential applications. In addition, a new epitaxial growth method for transition metal dichalcogenides involving direct selenization of metal supports is developed. These studies represent a significant step forward in expanding the family of 2D crystal materials and exploring their application potentials in future nanotechnology and related areas.
How can students, teachers, parents, and librarians be certain that the information a Web site provides is accurate and age appropriate? In this unique book, experienced science educator Judith A. Bazler reviews hundreds of the most reliable chemistry-related Web sites. Each review discusses the most appropriate grade level of the site, analyzes its accuracy and usefulness, and provides helpful hints for getting the most out of the resource. The Web is the first place many students look for information. Yet the Web is notoriously unreliable. How can students, teachers, parents, and librarians be certain that the information a Web site provides is accurate and age appropriate? In this unique book, experienced science educator Judith A. Bazler reviews hundreds of the most reliable chemistry-related Web sites. Each review discusses the most appropriate grade level of the site, analyzes its accuracy and usefulness, and provides helpful hints for getting the most out of the resource. Sites are organized by topic, from Acids to Thermodynamics, making it easy to locate the most useful sites. A handy summary presents the best places on the Web to find information on science museums, science centers, careers in chemistry, and chemistry supplies.
Isotope Labeling of Biomolecules - Labeling Methods, the latest volume of the Methods in Enzymology series contains comprehensive information on stable isotope labeling methods and applications for biomolecules.
|
![]() ![]() You may like...
Campaigning Culture and the Global Cold…
Giles Scott-Smith, Charlotte A Lerg
Hardcover
R3,565
Discovery Miles 35 650
Micro-Spatial Histories of Global Labour
Christian G. De Vito, Anne Gerritsen
Hardcover
R4,315
Discovery Miles 43 150
Shapers of Southern History…
Anne Firor Scott, Anthony J. Badger, …
Hardcover
R3,096
Discovery Miles 30 960
|