![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry
Basic Laboratory Methods for Biotechnology, Third Edition is a versatile textbook that provides students with a solid foundation to pursue employment in the biotech industry and can later serve as a practical reference to ensure success at each stage in their career. The authors focus on basic principles and methods while skillfully including recent innovations and industry trends throughout. Fundamental laboratory skills are emphasized, and boxed content provides step by step laboratory method instructions for ease of reference at any point in the students' progress. Worked through examples and practice problems and solutions assist student comprehension. Coverage includes safety practices and instructions on using common laboratory instruments. Key Features: Provides a valuable reference for laboratory professionals at all stages of their careers. Focuses on basic principles and methods to provide students with the knowledge needed to begin a career in the Biotechnology industry. Describes fundamental laboratory skills. Includes laboratory scenario-based questions that require students to write or discuss their answers to ensure they have mastered the chapter content. Updates reflect recent innovations and regulatory requirements to ensure students stay up to date. Tables, a detailed glossary, practice problems and solutions, case studies and anecdotes provide students with the tools needed to master the content. To succeed in the lab, it is crucial to be comfortable with the math calculations that are part of everyday work. This accessible introduction to common laboratory techniques focuses on the basics, helping even readers with good math skills to practice the most frequently encountered types of problems. Basic Laboratory Calculations for Biotechnology, Second Edition discusses very common laboratory problems, all applied to real situations. It explores multiple strategies for solving problems for a better understanding of the underlying math. Primarily organized around laboratory applications, the book begins with more general topics and moves into more specific biotechnology laboratory techniques at the end. This book features hundreds of practice problems, all with solutions and many with boxed, complete explanations; plus hundreds of "story problems" relating to real situations in the lab. Additional features include: Discusses common laboratory problems with all material applied to real situations Presents multiple strategies for solving problems help students to better understand the underlying math Provides hundreds of practice problems and their solutions Enables students to complete the material in a self-paced course structure with little teacher assistance Includes hundreds of "story problems"that relate to real situations encountered in the laboratory
The participation in interlaboratory studies and the use of
Certified Reference Materials (CRMs) are widely recognised tools
for the verification of the accuracy of analytical measurements and
they form an integral part of quality control systems used by many
laboratories, e.g. in accreditation schemes. As a response to the
need to improve the quality of environmental analysis, the European
Commission has been active in the past fifteen years, through BCR
activity (now renamed Standards, Measurements and Testing
Programme) in the organisation of series of interlaboratory studies
involving expert laboratories in various analytical fields
(inorganic, trace organic and speciation analysis applied to a wide
variety of environmental matrices). The BCR and its successor have
the task of helping European laboratories to improve the quality of
measurements in analytical sectors which are vital for the European
Union (biomedical, agriculture, food, environment and industry);
these are most often carried out in support of EC regulations,
industrial needs, trade, monitoring activities (including
environment, agriculture, health and safety) and, more generally,
when technical difficulties hamper a good comparability of data
among EC laboratories. The collaborative projects carried out so
far have placed the BCR in the position of second world CRM
producer (after NIST in the USA). "Interlaboratory Studies and Certification of Reference
Materials for Environmental Analysis" gives an account of the
importance of reference materials for the quality control of
environmental analysis and describes in detail the procedures
followed by BCR to prepare environmental reference materials,
including aspects related to sampling, stabilization,
homogenisation, homogeneity and stability testing, establishment of
reference (or certified) values, and use of reference materials.
Examples of environmental CRMs produced by BCR within the last 15
years are given, which represent more than 70 CRMs covering
different types of materials (plants, biological materials, waters,
sediments, soils and sludges, coals, ash and dust materials)
certified for a range of chemical parameters (major and trace
elements, chemical species, PAHs, PCBs, pesticides and
dioxins). The final section of the book describes how to organise
improvement schemes for the evaluation method and/or laboratory
performance. Examples of interlaboratory studies (learning scheme,
proficiency testing and intercomparison in support to prenormative
research) are also given.
In this book, the author provides expert analysis on naturally occurring iridoids, their chemistry and their distribution in plants and insects. Particular attention is given to the pharmacology of iridoids and their prospective applications in pharmaceutical and agricultural industries. Iridoids are found in a wide variety of plants and some insects, and they are structurally derived from monoterpenoid natural products. In the first two chapters of this book, the author describes the iridoids classification, occurrence and distribution in plants and insects. The following chapters cover different chromatographic and spectroscopic techniques that can be used to identify and quantify iridoids in herbal formulations, and also the biosynthesis of iridoids, in which the reader will discover a metabolomics and transcriptomics analysis to identify the genes involved in the biosynthesis. The final chapters provide insights on several pharmacological activities of iridoids, their physiological role in insects, pharmacokinetics in mammals, insects and microorganisms, and their applications in medicine and agriculture. This book will engage students and researchers interested in the chemistry of natural products, and it will also appeal to medicinal chemists and practitioners working in the design of new herbal drugs with bioactive pure iridoids.
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
This thesis focuses on NHC-catalyzed annulation of nitroalkenes, enals and , -unsaturated carboxylic acids. (1) NHCs were found to be efficient catalysts for the [4+2] annulation of -substituted nitroalkenes. The scope of Rauhut-Currier reaction was successfully extended to the most challenging -substituted alkenes by this method; (2) Enals were successfully used for [4+2] annulations with azodicarboxylates catalyzed by NHC via -addition. Highly enantiopure tetrahydropyridazinones and -amino acid derivatives could be easily prepared by subsequent transformations of the resulting dihydropyridazinones. (4) The readily available , -unsaturated carboxylic acids were first successfully employed to generate the , -unsaturated acyl azolium intermediates by using NHC for the enantioselective [3+2] and [3+3] annulations.
This volume reviews the drinking water treatments in which AOPs display a high application potential. Firstly it reveals the typical supply sources and limitations of conventional technologies and critically reviews natural organic matter characterization and removal techniques, focusing mainly on AOP treatments. It then explores using AOPs for simultaneous inactivation/disinfection of several types of microorganisms, including highly resistant Cryptosporidium protozoa. Lastly, it discusses relevant miscellaneous topics, like the most promising AOP solid catalysts, the regime change of Fenton-like processes toward continuous reactors, the application of chemometrics for process optimization, the impact on disinfection byproducts and the tracing of toxicity during AOP treatments. This work is a useful reference for researchers and students involved in water technologies, including analytical and environmental chemistry, chemical and environmental engineering, toxicology, biotechnology, and related fields. It is intended to encourage industrial and public-health scientists and decision-makers to accelerate the application of AOPs as technological alternatives for the improvement of drinking water treatment plants.
This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the "missing" instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors' own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.
Wheat Quality for Improving Processing and Human Health brings together an international group of leading wheat scientists to outline highly relevant and diverse aspects and the latest advances in understanding of the world's most consumed cereal. Topics covered include LMW glutenins, starch-related proteins, and the impact of processing on composition and consumer health. Individual chapters focus on important factors such as FODMAPs, protein structure, dough viscoelasticity and fumonisins. The environmental effects on allergen content are comprehensively covered, as are phenolic compounds and molecular markers. The major quality screening tools and genetic resources are reviewed in depth. Gluten is a major focus of this work with chapters dedicated to health effects, analytical methods and standards, proteomics and mutant proteins. Starting in 2015, wheat quality scientists from across the globe have united to develop the Expert Working Group for Improving Wheat Quality for Processing and Health under the umbrella of the Wheat Initiative. This joint effort provides a framework to establish strategic research and organisation priorities for wheat research at the international level in both developed and developing countries. This Expert Working Group aims to maintain and improve wheat quality for processing and health under varying environmental conditions. The Group focuses on a broad range of wheat quality issues including seed proteins, carbohydrates, nutrition quality and micronutrient content, grain processing and food safety. Bioactive compounds are also considered, both those with negative effects such as allergens and mycotoxins, and those with positive effects such as antioxidants and fibre. The Group also works in the development of germplasm sets and other tools that promote wheat quality research. Wheat quality specialists working on the wheat value chain, and nutritionists will find this book a useful resource to increase and update their knowledge of wheat quality, nutrition and health issues.
Laser Induced Breakdown Spectroscopy (LIBS) is an emerging technique for determining elemental composition. With the ability to analyse solids, liquids and gases with little or no sample preparation, it is more versatile than conventional methods and is ideal for on-site analysis. This is a comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. Over 300 illustrations aid understanding. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.
This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
In Advanced ULSI interconnects - fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous "Moore's law" which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.
An Introduction to the Gas Phase is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behavior of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.
This volume covers experimental and theoretical advances on the relationship between composition, structure and macroscopic mechanical properties of novel hydrogels containing dynamic bonds. The chapters of this volume focus on the control of the mechanical properties of several recently discovered gels with the design of monomer composition, chain architecture, type of crosslinking or internal structure. The gels discussed in the different chapters have in common the capability to dissipate energy upon deformation, a desired property for mechanical toughness, while retaining the ability to recover the properties of the virgin material over time or to self-heal when put back in contact after fracture. Some chapters focus on the synthesis and structural aspects while others focus on properties or modelling at the continuum or mesoscopic scale. The volume will be of interest to chemists and material scientists by providing guidelines and general structure-property considerations to synthesize and develop innovative gels tuned for applications. In addition it will provide physicists with a better understanding of the role of weak interactions between molecules and physical crosslinking on macroscopic dissipative properties and self-healing or self-recovering properties.
The Chemistry of Heterocyclic Compounds, since its inception, has been recognized as a cornerstone of heterocyclic chemistry. Each volume attempts to discuss all aspects - properties, synthesis, reactions, physiological and industrial significance - of a specific ring system. To keep the series up-to-date, supplementary volumes covering the recent literature on each individual ring system have been published. Many ring systems (such as pyridines and oxazoles) are treated in distinct books, each consisting of separate volumes or parts dealing with different individual topics. With all authors are recognized authorities, the Chemistry of Heterocyclic Chemistry is considered worldwide as the indispensable resource for organic, bioorganic, and medicinal chemists.
This book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields. An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes. * Connects innovative material performance to the flexibility of multimodal polymer design processes; * Provides a comprehensive description of the polymerization process from the atomic level to the macroscale; * Presents a polyhedric view of multimodal polymer production, including structure, property, and processing relationships, and the development of new materials.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.
DFT methods are widely used in a broad range of disciplines to investigate many body systems. This book provides an overview on contemporary applications of the Density Functional Theory in various fields as computational chemistry, physics or engineering.
The different LC-MS techniques available today were developed to
suit specific analytical needs and the application range covered by
each one is wide, but still limited. GC amenable compounds can be
all analyzed with a single GC-MS system whereas HPLC applications
call for specific LC-MS instrumental arrangements. ESI, APCI, APPI,
and EI are ionization techniques that can be combined with
different analyzers, in single or tandem configuration, to create
the ultimate system for a certain application. Once approaching
LC-MS for a specific need, the fast technical evolution and the
variegated commercial offer can induce confusion in the potential
user.
Personal protective equipment (PPE) is critical for those dealing with toxic, infectious, and radioactive materials. An easily accessible guide for professionals and researchers in all PPE fields, this book takes a fresh look at how PPE is designed, selected, and used in today's emergency response environment where users may need to be protected against deliberately used chemical, biological, or radiological agents in terrorism or warfare scenarios as well as more traditional hazards. Covering the physics, chemistry, and physiology of these hazards, the book explains how PPE protects from various forms of hazards as well as how to use this information to select PPE against these highly hazardous substances for first responder or military users. The design of PPE and components plus relevant performance and evaluation standards are also discussed.
Many industrial formulations such as detergents, paints, foodstuff and cosmetics contain both surfactants and polymers and their interaction govern many of the properties. This book is unique in that it discusses the solution chemistry of both surfactants and polymers and also the interactions between the two. The book, which is based on successful courses given by the authors since 1992, is a revised and extended version of the first edition that became a market success with six reprints since 1998. Surfactants and Polymers in Aqueous Solution is broad in scope, providing both theoretical insights and practical help for those active in the area. This book contains a thorough discussion of surfactant types and gives information of main routes of preparation. A chapter on novel surfactants has been included in the new edition. Physicochemical phenomena such as self-assembly in solution, adsorption, gel formation and foaming are discussed in detail. Particular attention is paid to the solution behaviour of surfactants and polymers containing polyoxyethylene chains. Surface active polymers are presented and their interaction with surfactants is a core topic of the book. Protein-surfactant interaction is also important and a new chapter deals with this issue. Microemulsions are treated in depth and several important application such as detergency and their use as media for chemical reactions are presented. Emulsions and the choice of emulsifier is discussed in some detail. The new edition also contains chapters on rheology and wetting. Surfactants and Polymers in Aqueous Solution is aimed at those dealing with surface chemistry research at universities and with surfactant formulation in industry.
The accurate interpretation of infrared spectra of organic structures is an extremely important tool for the analytical chemist. Using up-to-date source material, this volume presents a compilation of the infrared absorption regions of ninety of the most important organic molecular fragments. This highly practical guide introduces the reader to a straightforward technique for determining all the fundamental vibrations of a molecular fragment. The set of normal vibrations and the infrared absorption regions of ninety molecular fragments are then discussed and tabulated. The discussion of each fragment is accompanied by a large number of references. A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures offers the analytical chemist the possibility of a more profound interpretation of infrared spectra. In addition, it assumes only a basic knowledge of infrared spectra, and so will prove very useful for non-specialists who use infrared spectroscopy in analysis.
The "greening" of industry processes - i.e., making them more sustainable - is a popular and often lucrative trend which has seen increased attention in recent years. Green Chemical Processes, the 2nd volume of Green Chemical Processing, covers the hot topic of sustainability in chemistry with a view to education, as well as considering corporate and environmental interests, e.g. in the context of energy production. The diverse team of authors allows for a balance between these different, but interconnected perspectives. The American Chemical Society's 12 Principles of Green Chemistry are woven throughout this text as well as the series to which this book belongs.
|
![]() ![]() You may like...
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
R307
Discovery Miles 3 070
|