![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry
The indiscriminate use of medications and their inadequate disposal have resulted in them being released into the environment via municipal, hospital and industrial discharges. This volume critically examines the presence of pharmaceuticals in aquatic ecosystems, the hazards they entail, and how to minimize their impact on the environment. The topics covered include: historical findings that have made the development of the discipline ecopharmacovigilance possible; the main exposure routes, fate and life cycle of pharmaceuticals in water; occurrence data and the impact on biodiversity; methods used for the detection, analysis and quantification of pharmaceuticals in water and for their removal; current legislation on the presence of emerging contaminants in water; biosensors for environmental analysis and monitoring; and the measures needed to reduce the existing problems. This book is aimed at students, academics and research workers in the fields of toxicology, ecology, microbiology and chemistry, as well as those in the pharmaceutical industry, health sector professionals, and members of government bodies involved in environmental protection and legislation. Industrial: Industrial Protein Xray Crystallography: An Overview (J.D. Oliver) Recent Advances in the Use of Synchrotron Radiation for Protein Crystallography (R. Sweet). The Crystal Structures of Some New Forms of Aluminum Fluoride as Determined from Their Synchrotron Powder Diffraction Patterns (R.L. Harlow et al.). Synchrotron Radiationbased Research at the Dow Chemical Company (R.A. Bubeck et al.). Chemical: The Chemical Dynamics Beamline at the Advanced Light Source (A.G. Suits et al.). High Resolution Photoionization and Excitation Using Third Generation Radiation Sources (N. Berrah et al.). Recent Advances toward a Structural Model for the Photosynthetic Oxygenevolving Manganes Cluster (M.J. Latimer et al.). Cesium XAFS Studies of Solution Phase Csionophore Complexation (K.M. Kemner et al.). Materials Science: Studies of Magnetic Material with Circular Polarized Soft Xrays (V. Chakarian et al.). Resonant Photoemission in Polymers (J. Kikuma et al.). Characterization of the Complexation of Uranyl Ions with Humic Acids by Xray Absorption Spectroscopy (T. Reich et al.). Spectroscopic Studies of Lanthanide Coordination in Crystalline and Amorphous Phosphates (L.R. Morss et al.). 5 additional articles. Index.
This book covers various molecular, metal-organic, dynamic covalent, polymer and other gels, focusing on their driving interactions, structures and properties. It consists of six chapters demonstrating interesting examples of these gels, classified by the type of driving interaction, and also discusses the effect of these interactions on the gels' structures and properties. The book offers an interesting and useful guide for a broad readership in various fields of chemical and materials science.
The purpose of this text is to introduce engineering and science students to the basic underlying physics and chemistry concepts that form the foundation of plasma science and engineering. It is an accessible primer directed primarily at those students who, like the general public, simply do not understand exactly what a plasma or gas discharge is nor do they even necessarily have the fundamental background in statistical thermodynamics, gas dynamics, fluid dynamics, or solid state physics to effectively understand many plasma and gas discharge principles. At the conclusion of this text, the reader should understand what an ion is, how they move, the equations we use to describe these basic concepts, and how they link to the aforementioned topics of plasmas and gas discharges. This book is focused on specific concepts that are important to non-equilibrium, low temperature gas discharges. These discharges fi nd wide applicability today and are of significant interest to the scientifi c and engineering communities.
IR spectroscopy has become without any doubt a key technique to answer questions raised when studying the interaction of proteins or peptides with solid surfaces for a fundamental point of view as well as for technological applications. Principle, experimental set ups, parameters and interpretation
rules of several advanced IR-based techniques; application to
biointerface characterisation through the presentation of recent
examples, will be given in this book. It will describe how to
characterise amino acids, protein or bacterial strain interactions
with metal and oxide surfaces, by using infrared spectroscopy, in
vacuum, in the air or in an aqueous medium. Results will highlight
the performances and perspectives of the technique.
This book explores efficient syntheses of indole alkaloids based on gold-catalyzed cascade cyclizations, presenting two strategies for total synthesis of these natural products based on gold-catalyzed reactions of conjugated diyne or ynamide. The book first describes the total and formal synthesis of dictyodendrins A-F based on direct construction of the pyrrolo[2,3-c]carbazole core using the gold-catalyzed annulation of azido-diynes and protected pyrrole. This synthetic strategy features late-stage functionalization of the pyrrolo[2,3-c]carbazole scaffold at several positions and allows diverse access to dictyodendrins and their derivatives. Secondly, the book discusses the formal synthesis of vindorosine based on the pyrrolo[2,3-d]carbazole construction using the gold-catalyzed cascade cyclization of ynamide. Importantly, the reaction using a chiral gold complex provides the optically active pyrrolo[2,3-d]carbazole. This strategy facilitates the rapid construction of the pyrrolocarbazole core structure of aspidosperma and related alkaloids, including vindorosine. These methodologies can accelerate the medicinal application of pyrrolocarbazole-type alkaloids and related compounds.
Supercritical fluids behave either like a gas or a liquid, depending on the values of thermodynamic properties. This tuning of properties, and other advantageous properties of supercritical fluids led to innovative technologies. More than 100 plants of production size are now in operation worldwide in the areas of process and production technology, environmental applications, and particle engineering. New processes are under research and development in various fields.
This book explores different aspects of LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry). It presents a large array of new analytical protocols for elemental or isotope analysis. LA-ICP-MS is a powerful tool that combines a sampling device able to remove very small quantities of material without leaving visible damage at the surface of an object. Furthermore, it functions as a sensitive analytical instrument that measures, within a few seconds, a wide range of isotopes in inorganic samples. Determining the elemental or the isotopic composition of ancient material is essential to address questions related to ancient technology or provenance and therefore aids archaeologists in reconstructing exchange networks for goods, people and ideas. Recent improvements of LA-ICP-MS have opened new avenues of research that are explored in this volume.
This book systematically analyses state-of-the-art technology and research related to desiccant dehumidification. It provides key insights into the current research direction, and presents global research and development interests. It begins by offering a comprehensive review of conventional desiccants and their underlying engineering challenges. Fundamental material characteristic properties and factors critical to the desiccant synthesis are highlighted. The applicability of next-generation advanced materials to address the challenges is documented, and the advantages of desiccant coated heat exchangers are evaluated. Lastly, the potential applications of desiccant dehumidifiers in various energy-connected applications are discussed, and case studies on industrial/building cooling systems are provided. Specifically targeted at HVAC engineers, thermal scientists, energy-engineering researchers, and graduate-level students in the field, the technical content balances fundamental concepts and applications.
New models for dislocation structure and motion are presented for
nanocrystals, nucleation at grain boundaries, shocked crystals,
interphase interfaces, quasicrystals, complex structures with
non-planar dislocation cores, and colloidal crystals. A review of
experimentally established main features of the magnetoplastic
effect with their physical interpretation explains many diverse
results of this type. The model has many potential applications for
forming processes influenced by magnetic fields.
Designed to sit alongside more conventional established condensed matter physics textbooks, this compact volume offers a concise presentation of the principles of solid state theory, ideal for advanced students and researchers requiring an overview or a quick refresher on a specific topic. The book starts from the one-electron theory of solid state physics, moving through electron-electron interaction and many-body approximation schemes, to lattice oscillations and their interactions with electrons. Subsequent chapters discuss transport theory and optical properties, phase transitions and some properties of low-dimensional semiconductors. This extensively expanded second edition includes new material on adiabatic perturbation theory, kinetic coefficients, the Nyquist theorem, Bose condensation, and the field-theoretical approach to non-relativistic quantum electrodynamics. Throughout the text, mathematical proofs are often only sketched, and the final chapter of the book reviews some of the key concepts and formulae used in theoretical physics. Aimed primarily at graduate and advanced undergraduate students taking courses on condensed matter theory, the book serves as a study guide to reinforce concepts learned through conventional solid state texts. Researchers and lecturers will also find it a useful resource as a concise set of notes on fundamental topics.
This book presents a comprehensive overview of the fundamental concept, design, working protocols, and diverse photo-chemicals aspects of different solar cell systems with promising prospects, using computational and experimental techniques. It presents and demonstrates the art of designing and developing various solar cell systems through practical examples. Compared to most existing books in the market, which usually analyze existing solar cell approaches this volume provides a more comprehensive view on the field. Thus, it offers an in-depth discussion of the basic concepts of solar cell design and their development, leading to higher power conversion efficiencies. The book will appeal to readers who are interested in both fundamental and application-oriented research while it will also be an excellent tool for graduates, researchers, and professionals working in the field of photovoltaics and solar cell systems.
This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer's usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).
With contributions by leading international experts, this book presents a detailed compilation of a new and very active field. It is the first book devoted to the covalent coupling of molecular precursors on surfaces that allows the preparation of 0D, 1D and 2D molecules that cannot be synthesized in solution. This book is aimed at students and researchers interested in nanochemistry and molecular devices and it gives the reader a pedagogical up-to-date vision of the most recent developments. The editor ensures a multidisciplinary approach involving molecular chemistry, surface sciences, surface spectroscopies, theory, scanning tunneling and non-contact atomic force microscopies.
This book explores how nuclear magnetic resonance (NMR) spectroscopy may be used for spatial structural elucidation of novel compounds from fungal and synthetic sources. Readers will discover the exciting world of NOE (nuclear Overhauser effect), RDC (residual dipolar coupling) and J-coupling constants, both short- and long range. With emphasis on obtaining structural knowledge from these NMR observables, focus is moved from solving a static 3D structure to solving the structural space inhabited by small organic molecules. The book outlines the development and implementation of two Heteronuclear Multiple Bond Correlation-type NMR experiments, and the 3D structural elucidation of multiple known and novel compounds. In addition, a new method of back-calculating RDCs (allowing for more flexible structures to be investigated), and the synthesis and evaluation of novel chiral alignment media for ab initio determination of absolute stereochemistry of small molecules using RDCs are also included. Challenges that 3D structural generation of small compounds face are also covered in this work.
This practical, well-organized reference delves deeply into functional group transformations, to provide all the detailed information that researchers need.
This book presents recent material science-based and mechanical analysis-based advances in joining processes. It includes all related processes, e.g. friction stir welding, joining by plastic deformation, laser welding, clinch joining, and adhesive bonding, as well as hybrid joints. It gathers selected full-length papers from the 1st Conference on Advanced Joining Processes.
This book features the essential material for any graduate or advanced undergraduate course covering solid-state electrochemistry. It provides the reader with fundamental course notes and numerous solved exercises, making it an invaluable guide and compendium for students of the subject. The book places particular emphasis on enhancing the reader's expertise and comprehension of thermodynamics, the Kroeger-Vink notation, the variation in stoichiometry in ionic compounds, and of the different types of electrochemical measurements together with their technological applications. Containing almost 100 illustrations, a glossary and a bibliography, the book is particularly useful for Master and PhD students, industry engineers, university instructors, and researchers working with inorganic solids in general.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume Four considers surface interactions, modifications and reactions, as well as reactive processes for recycling polymers and their biodegradability and compostability. World renowned researchers from Argentina, Austria, China, Egypt, France, Iran, Italy, Nepal and United States have participated in this book. With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
This book introduces the latest research regarding the adsorption of heavy metals, toxic ions, and organic compounds at the interfaces of water/minerals, such as mineralogical characterizations, surface chemistry, and modification of natural minerals as adsorbents, as well as the adsorption of cations, anions, and organic compounds in water. Presenting findings by the authors and their co-workers, the book helps readers grasp the principals and benefits of using minerals for water treatment, as well as the advanced technologies in the area developed over last 30 years, especially the last 10 years.
The fundamentals of the discipline, now complete with the latest experimental research and techniques Factor analysis is a mathematical tool for examining a wide range of data sets, with applications especially important to the design of experiments (DOE), spectroscopy, chromatography, and chemometrics. Whereas the first two editions concentrated on standardizing the fundamentals of this emerging discipline, the Third Edition of Factor Analysis in Chemistry, the "bible" of factor analysis, proves a comprehensive handbook at a level that is consistent with the research and design of experiments today. With the exception of updates, the introductory chapters remain unchanged. Chapter 6 has been edited to focus on evolutionary methods, including window factor analysis, transmutation, and DECRA. Selections on partial least squares and multimode analysis have been expanded and consolidated into two new chapters, 7 and 8. Some of the latest advances in a wide variety of fields, such as chromatography, NMR, biomedicine, environmental science, food, and fuels, are described in the applications chapters (chapters 9 through 12). Other features of the text include:
Factor Analysis in Chemistry, Third Edition remains the premier reference in its field.
For courses intwo-semester general chemistry. Accurate, data-driven authorship with expanded interactivityleads to greater student engagement Unrivaled problemsets, notable scientific accuracy and currency, and remarkable clarity havemade Chemistry: The Central Science the leading generalchemistry text for more than a decade. Trusted, innovative, and calibrated, thetext increases conceptual understanding and leads to greater student success ingeneral chemistry by building on the expertise of the dynamic author team ofleading researchers and award-winning teachers. MasteringTMChemistry is not included. Students, if Mastering isa recommended/mandatory component of the course, please ask your instructor forthe correct ISBN and course ID. Mastering should only be purchased whenrequired by an instructor. Instructors, contact your Pearson rep for moreinformation. Mastering is an online homework,tutorial, and assessment product designed to personalize learning and improveresults. With a wide range of interactive, engaging, and assignable activities,students are encouraged to actively learn and retain tough course concepts.
This thesis introduces a unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials, providing high-resolution computer-generated imagery (CGI) and diagrams to aid readers' understanding and visualization. The isolation of graphene and, shortly after, a host of other 2D materials has attracted a great deal of interest in the scientific community for both their range of extremely desirable and their record-breaking properties. Amongst these properties are some of the highest elastic moduli and tensile strengths ever observed in nature. The work, which was undertaken at Lancaster University's Physics department in conjunction with the University of Manchester and the National Physical Laboratory, offers a new approach to understanding the nanomechanical and nanoelectromechanical properties of 2D materials by utilising the nanoscale and nanosecond resolution of ultrasonic force and heterodyne force microscopy (UFM and HFM) - both contact mode atomic force microscopy (AFM) techniques. Using this approach and developing several other new techniques the authors succeeded in probing samples' subsurface and mechanical properties, which would otherwise remain hidden. Lastly, by using a new technique, coined electrostatic heterodyne force microscopy (E-HFM), the authors were able to observe nanoscale electromechanical vibrations with a nanometre and nanosecond resolution, in addition to probing the local electrostatic environment of devices fabricated from 2D materials.
This book presents a short introduction to the historical background to the field, the state of the art and a brief survey of the available instrumentation and the processing techniques used. The following major areas of interest in synthetic, organic and medicinal chemistry are elaborated on: transition-metal catalyzed reactions, organocatalytic transformations, heterocyclic synthesis, and photochemical reactions. Finally, selected applications in industry are also discussed. With its ample presentation of examples from recent literature, this is an essential and reliable source of information for both experienced researchers and postgraduate newcomers to the field. |
![]() ![]() You may like...
Contemporary Peace Making - Conflict…
J. Darby, R. Mac Ginty, …
Hardcover
R1,634
Discovery Miles 16 340
Bride Ideas and Frock-Ups
Sim Canetty-Clarke, Amanda Lockhart, …
Hardcover
![]() R526 Discovery Miles 5 260
|