![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry
This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.
This book originated out of a desire to combine topics on vibrational absorption, Raman scattering, vibrational circular dichroism (VCD) and Raman optical activity (VROA) into one source. The theoretical details of these processes are presented in ten different chapters. Using dispersive and Fourier transform techniques, the instrumentation involved in these spectral measurements are given in three chapters. Major emphasis is placed on the newer techniques, i.e. VCD and VROA, with the conventional vibrational absorption and vibrational Raman scattering methods incorporated as natural parts of the newer methods. Features of this book: Comprehensive coverage of vibrational circular dichroism and vibrational Raman optical activity. Coverage of theoretical and instrumental details. A comprehensive survey of VCD and VROA applications is included, so that the reader can get an overview of theory, instrumentation and applications in one source. The topics covered are of an advanced level, which makes this
book invaluable for graduate students and practising scientists in
vibrational spectroscopy.
Enhanced with new problems and applications, the Fourth Edition of CHEMISTRY FOR ENGINEERING STUDENTS provides a concise, thorough, and relevant introduction to chemistry that prepares you for further study in any engineering field. Updated with new conceptual understanding questions and applications specifically geared toward engineering, the book emphasizes the connection between molecular properties and observable physical properties and the connections between chemistry and other subjects such as mathematics and physics.
This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.
The continued greening of the energy sector, with inroads being made through numerous sources of materials that can produce energy, is the main focus of this, Green Chemical Processing, Volume 8. It includes contributions from area experts in widely different fields, all involved in energy production, and makes connections to the 12 Principles of Green Chemistry.
This book investigates a wide range of phase equilibrium modelling and calculation problems for compositional thermal simulation. Further, it provides an effective solution for multiphase isenthalpic flash under the classical framework, and it also presents a new flash calculation framework for multiphase systems, which can handle phase equilibrium and chemical reaction equilibrium simultaneously. The framework is particularly suitable for systems with many phases and reactions. In this book, the author shows how the new framework can be generalised for different flash specifications and different independent variables. Since the flash calculation is at the heart of various types of compositional simulation, the findings presented here will promote the combination of phase equilibrium and chemical equilibrium calculations in future simulators, aiming at improving their robustness and efficiency.
Since the first works introducing the aluminum intercalated clay family in the early 1970s, interest in the synthesis of pillared interlayered clays has increased tremendously, especially research into the properties and applications of new synthesis methods. The need for solids that could be used as cracking catalysts with larger pores than zeolitic materials has spurred the synthesis of new porous materials from clays. Pillared Clays and Related Catalysts reviews the properties and applications of pillared clays and other layered materials used as catalysts, focusing on: the acidity of pillared clays and the effect it has on catalytic performance the use of pillared clays as supports for catalytically active phases, and the use of the resulting solids in environmentally friendly reactions the applications of the selective reduction of NOx the comparison between the reactions of pillared clays and anionic clays.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe's leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
This book provides a comprehensive, step-by-step approach to
organic process research and development in the pharmaceutical,
fine
This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between the fluid modelling to its physical parameters and new matlab programs illustrating the modelling. Particle-based modelling techniques for complex-structure fluids are added together with some sample programs. A solution manual to the problems is included.
Advances in Clinical Chemistry, Volume 85, the latest installment in this internationally acclaimed series, contains chapters authored by world-renowned clinical laboratory scientists, physicians and research scientists. The serial discusses the latest and most up-to-date technologies related to the field of clinical chemistry, and is the benchmark for novel analytical approaches in the clinical laboratory.
The authors provide new insights into the theoretical and applied aspects of metal electrodeposition. The theory largely focuses on the electrochemistry of metals. Details on the practice discuss the selection and use of metal coatings, the technology of deposition of metals and alloys, including individual peculiarities, properties and structure of coatings, control and investigations. This book aims to acquaint advanced students and researchers with recent advances in electrodeposition while also being an excellent reference for the practical electrodeposition of metals and alloys.
This book provides a modern and easy-to-understand introduction to the chemical equilibria in solutions. It focuses on aqueous solutions, but also addresses non-aqueous solutions, covering acid-base, complex, precipitation and redox equilibria. The theory behind these and the resulting knowledge for experimental work build the foundations of analytical chemistry. They are also of essential importance for all solution reactions in environmental chemistry, biochemistry and geochemistry as well as pharmaceutics and medicine. Each chapter and section highlights the main aspects, providing examples in separate boxes. Questions and answers are included to facilitate understanding, while the numerous literature references allow students to easily expand their studies.
The second edition defines the tools used in QA/QC, especially the application of statistical tools during analytical data treatment. Clearly written and logically organized, it takes a generic approach applicable to any field of analysis. The authors begin with the theory behind quality control systems, then detail validation parameter measurements, the use of statistical tests, counting the margin of error, uncertainty estimation, traceability, reference materials, proficiency tests, and method validation. New chapters cover internal quality control and equivalence method, changes in the regulatory environment are reflected throughout, and many new examples have been added to the second edition.
THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND
RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT
MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY.
TUTORIALS AND REVIEWS COVER
As a byproduct of historical development, there are different,
unrelated systems of nomenclature for "inorganic chemistry,"
"organic chemistry," "polymer chemistry," "natural products
chemistry," etc. With each new discovery in the laboratory, as well
as each new theoretical proposal for a chemical, the lines that
traditionally have separated these "distinct" subsets of matter
continually grow more blurred. This lack of uniformity in
characterizing and naming chemicals increases the communication
difficulties between differently trained chemists, as well as other
scientists, and greatly impedes progress. With the set of known
chemicals numbering over 42,000,000 (in Chemical Abstracts' data
base) and continually growing (about 2,000 new additions every
day), the desirability for a unified system for naming all
chemicals simultaneously grows. Moreover, in order to meet the
requirements of disparate groups of scientists, and of society in
general, the name assigned to a given chemical should, not only
uniquely describe that substance, but also should be a part of a
readily recognizable order for the entire field. For these
purposes, a topology-based "bi-parametric" system of nomenclature
is herein proposed.
Bridging Scales in Modelling and Simulating Reacting Flows, Part I , Volume 52 presents key methods to bridge scales in the simulation of reacting single phase flows. New sections in the updated release include topics such as quadrature-based moment methods for multiphase chemically reacting flows, the collaboration of experiments and simulations for the development of predictive models, a simulation of turbulent coalescence and breakage of bubbles and droplets in the presence of surfactants, a section on salts and contaminants, and information on the numerical simulation of reactive flows.
This thesis focuses on theoretical analysis of the sophisticated ultrafast optical experiments that probe the crucial first few picoseconds of quantum light harvesting, making an important contribution to quantum biology, an exciting new field at the intersection of condensed matter, physical chemistry and biology. It provides new insights into the role of vibrational dynamics during singlet fission of organic pentacene thin films, and targeting the importance of vibrational dynamics in the design of nanoscale organic light harvesting devices, it also develops a new wavelet analysis technique to probe vibronic dynamics in time-resolved nonlinear optical experiments. Lastly, the thesis explores the theory of how non-linear "breather" vibrations are excited and propagate in the disordered nanostructures of photosynthetic proteins.
Catalytic Amination for N-Alkyl Amine Synthesis provides a useful survey of this key type of reaction for chemistry researchers in academia and industry. Beginning with an introduction to amination and the development of the field, the book focuses on useful and high potential methods, such as the catalytic amination of alcohol with homogeneous and heterogeneous catalysts, the coupling reaction of olefin and amine, and the reductive amination of carbon dioxide with different reducing agents. The work also discusses two key examples of one-pot synthesis, the oxidative amination of alkane and amine and synthesis of N-alkyl amine with nitrobenzene and nitrile as starting materials. Valuable for chemists, materials scientists, chemical engineers and others, the book offers a unique overview of this growing area and its future possibilities.
There is much scientific interest in ice, both because of its unique and intriguing properties and because of its importance in the natural environment. This book is written for professional scientists and engineers, and is the only currently available book of its kind. It describes the physical properties of ice, interprets them in terms of its molecular structure, and shows their relevance to the forms of ice found on Earth and in space.
This is the fifteenth annual volume of "Progress in Heterocyclic
Chemistry," which covers the literature published during 2002. The
volume opens with three reviews on current heterocyclic topics. The
highlight chapters in Volume 15 are all written by leading
researchers in their field and these chapters constitute a
systematic survey of the important original material reported in
the literature on heterocyclic chemistry in 2002. As with previous
volumes in the series, Volume 15 will enable the reader to keep
abreast of developments in heterocyclic chemistry in an effortless
way.
This thesis investigates the combustion chemistry of cyclohexane, methylcyclohexane, and ethylcyclohexane on the basis of state-of-the-art synchrotron radiation photoionization mass spectrometry experiments, quantum chemistry calculations, and extensive kinetic modeling. It explores the initial decomposition mechanism and distribution of the intermediates, proposes a novel formation mechanism of aromatics, and develops a detailed kinetic model to predict the three cycloalkanes' combustion properties under a wide range of conditions. Accordingly, the thesis provides an essential basis for studying much more complex cycloalkanes in transport fuels and has applications in engine and fuel design, as well as emission control. |
You may like...
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,460
Discovery Miles 54 600
Comprehensive Inorganic Chemistry III
J. Reedijk, Kenneth R. Poeppelmeier
Hardcover
R95,239
Discovery Miles 952 390
|