![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design > Computer aided design (CAD)
This book provides an in-depth exploration of the field of augmented reality (AR) in its entirety and sets out to distinguish AR from other inter-related technologies like virtual reality (VR) and mixed reality (MR). The author presents AR from its initial philosophies and early developments, to its current technologies and its impact on our modern society, to its possible future developments; providing readers with the tools to understand issues relating to defining, building, and using our perception of what is represented in our perceived reality, and ultimately how we assimilate and react to this information. Augmented Reality: Where We Will All Live can be used as a comprehensive guide to the field of AR and provides valuable insights for technologists, marketers, business managers, educators and academics who are interested in the field of augmented reality; its concepts, history, practices and the science behind this rapidly advancing field of research and development.
This book offers an in-depth insight into the general-purpose finite element program MSC Marc, which is distributed by MSC Software Corporation. It is a specialized program for nonlinear problems (implicit solver) which is common in academia and industry. The primary goal of this book is to provide a comprehensive introduction to a special feature of this software: the user can write user-subroutines in the programming language Fortran, which is the language of all classical finite element packages. This subroutine feature allows the user to replace certain modules of the core code and to implement new features such as constitutive laws or new elements. Thus, the functionality of commercial codes ('black box') can easily be extended by linking user written code to the main core of the program. This feature allows to take advantage of a commercial software package with the flexibility of a 'semi-open' code.
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the ninth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Damage Analysis from Thermal Measurements Quantitative Visualization Stress Analysis from Thermal Measurements New Approaches to Residual Stress Measurement Residual Stress & Optical Methods Non-homogeneous Parameters Identification General Inverse Methods Residual Stress Measurement by X-Ray Diffraction
This book discusses a number of real-world applications of computational intelligence approaches. Using various examples, it demonstrates that computational intelligence has become a consolidated methodology for automatically creating new competitive solutions to complex real-world problems. It also presents a concise and efficient synthesis of different systems using computationally intelligent techniques.
This thesis describes the physics and computational aspects of an end-to-end simulator to predict the performance of a Space-based Far Infrared Interferometer. The present thesis also includes, the science capabilities and instrumental state-of-the art. The latter is the ambitious next step which the Far-Infrared Astrophysical community needs to take to improve in anyway on the results of the most recent and current space telescopes in this wavelength region. This thesis outlines the requirements involved in such a mission and describes the most promising technique to capture most of the astrophysical information by combining spectroscopy to spatial interferometer. The simulation of such a system is extremely complex requiring multiple Fourier transforms each of which is subject to instrument non-idealities and appropriate optimization techniques. As a conclusion, the thesis provides an example of the basic performance achievable with such an instrument when targeting a young star formation region.
The first part of this textbook presents the mathematical background needed to precisely describe the basic problem of continuum thermomechanics. The book then concentrates on developing governing equations for the problem dealing in turn with the kinematics of material continuum, description of the state of stress, discussion of the fundamental conservation laws of underlying physics, formulation of initial-boundary value problems and presenting weak (variational) formulations. In the final part the crucial issue of developing techniques for solving specific problems of thermomechanics is addressed. To this aim the authors present a discretized formulation of the governing equations, discuss the fundamentals of the finite element method and develop some basic algorithms for solving algebraic and ordinary differential equations typical of problems on hand. Theoretical derivations are followed by carefully prepared computational exercises and solutions.
This book presents a new, multidisciplinary perspective on and paradigm for integrative experimental design research. It addresses various perspectives on methods, analysis and overall research approach, and how they can be synthesized to advance understanding of design. It explores the foundations of experimental approaches and their utility in this domain, and brings together analytical approaches to promote an integrated understanding. The book also investigates where these approaches lead to and how they link design research more fully with other disciplines (e.g. psychology, cognition, sociology, computer science, management). Above all, the book emphasizes the integrative nature of design research in terms of the methods, theories, and units of study-from the individual to the organizational level. Although this approach offers many advantages, it has inherently led to a situation in current research practice where methods are diverging and integration between individual, team and organizational understanding is becoming increasingly tenuous, calling for a multidisciplinary and transdiscipinary perspective. Experimental design research thus offers a powerful tool and platform for resolving these challenges. Providing an invaluable resource for the design research community, this book paves the way for the next generation of researchers in the field by bridging methods and methodology. As such, it will especially benefit postgraduate students and researchers in design research, as well as engineering designers.
This book presents a computer-aided approach to the design of mechatronic systems. Its subject is an integrated modeling and simulation in a visual computer environment. Since the first edition, the simulation software changed enormously, became more user-friendly and easier to use. Therefore, a second edition became necessary taking these improvements into account. The modeling is based on system top-down and bottom-up approach. The mathematical models are generated in a form of differential-algebraic equations and solved using numerical and symbolic algebra methods. The integrated approach developed is applied to mechanical, electrical and control systems, multibody dynamics, and continuous systems.
This book is the first standalone book that combines research into low-noise amplifiers (LNAs) with research into millimeter-wave circuits. In compiling this book, the authors have set two research objectives. The first is to bring together the research context behind millimeter-wave circuit operation and the theory of low-noise amplification. The second is to present new research in this multi-disciplinary field by dividing the common LNA configurations and typical specifications into subsystems, which are then optimized separately to suggest improvements in the current state-of-the-art designs. To achieve the second research objective, the state-of-the-art LNA configurations are discussed and the weaknesses of state-of the art configurations are considered, thus identifying research gaps. Such research gaps, among others, point towards optimization - at a systems and microelectronics level. Optimization topics include the influence of short wavelength, layout and crosstalk on LNA performance. Advanced fabrication technologies used to decrease the parasitics of passive and active devices are also explored, together with packaging technologies such as silicon-on-chip and silicon-on-package, which are proposed as alternatives to traditional IC implementation. This research outcome builds through innovation. Innovative ideas for LNA construction are explored, and alternative design methodologies are deployed, including LNA/antenna co-design or utilization of the electronic design automation in the research flow. The book also offers the authors' proposal for streamlined automated LNA design flow, which focuses on LNA as a collection of highly optimized subsystems.
This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.
"Progress in Expressive Image Synthesis" (MEIS2015), was held in Fukuoka, Japan, September 25-27, 2015. The aim of the symposium was to provide a unique venue where various issues in computer graphics (CG) application fields could be discussed by mathematicians, CG researchers, and practitioners. Through the previous symposiums MEIS2013 and MEIS2014, mathematicians as well as CG researchers have recognized that CG is a specific and practical activity derived from mathematical theories. Issues found in CG broaden the field of mathematics and vice versa, and CG visualizes mathematical theories in an aesthetic manner. In this volume, the editors aim to provoke interdisciplinary research projects through the peer-reviewed papers and poster presentations at the this year's symposium. This book captures interactions among mathematicians, CG researchers, and practitioners sharing important, state-of-the-art issues in graphics and visual perception. The book is suitable for all CG researchers seeking open problem areas and especially for those entering the field who have not yet selected a research direction.
This book covers a variety of topics in material, mechanical, and management engineering, especially in the area of machine design, product assembly, measurement systems, process planning and quality control. It describes cutting-edge methods and applications, together with exemplary case studies. The content is based on papers presented at the 5th International Scientific-Technical Conference (MANUFACTURING 2017) held in Poznan, Poland on 24-26 October 2017. The book brings together engineering and economic topics, is intended as an extensive, timely and practice-oriented reference guide for researchers and practitioners, and is expected to foster better communication and closer cooperation between universities and their business and industry partners.
This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.
This textbook presents the core of recent advances in design theory and its implications for design methods and design organization. Providing a unified perspective on different design methods and approaches, from the most classic (systematic design) to the most advanced (C-K theory), it offers a unique and integrated presentation of traditional and contemporary theories in the field. Examining the principles of each theory, this guide utilizes numerous real life industrial applications, with clear links to engineering design, industrial design, management, economics, psychology and creativity. Containing a section of exams with detailed answers, it is useful for courses in design theory, engineering design and advanced innovation management. "Students and professors, practitioners and researchers in diverse disciplines, interested in design, will find in this book a rich and vital source for studying fundamental design methods and tools as well as the most advanced design theories that work in practice". Professor Yoram Reich, Tel Aviv University, Editor-in-Chief, Research In Engineering Design. "Twenty years of research in design theory and engineering have shown that training in creative design is indeed possible and offers remarkably operational methods - this book is indispensable for all leaders and practitioners who wish to strengthen theinnovation capacity of their company." Pascal Daloz, Executive Vice President, Dassault Systemes
This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measurement without errors and mistakes. The arrangement of projections of a geometrical image on the complex drawing corresponds to an arrangement of views of a product in the projective drawing for the European system of measurement. The volume is ideal for engineers working on a range of design projects as well as for students of civil, structural, and industrial engineering and engineering design.
Providing a step-by-step guide for the implementation of virtual manufacturing using Creo Parametric software (formerly known as Pro-Engineer), this book creates an engaging and interactive learning experience for manufacturing engineering students. Featuring graphic illustrations of simulation processes and operations, and written in accessible English to promote user-friendliness, the book covers key topics in the field including: the engraving machining process, face milling, profile milling, surface milling, volume rough milling, expert machining, electric discharge machining (EDM), and area turning using the lathe machining process. Maximising reader insights into how to simulate material removal processes, and how to generate cutter location data and G-codes data, this valuable resource equips undergraduate, postgraduate, BTech and HND students in the fields of manufacturing engineering, computer aided design (CAD) and computer aided engineering (CAE) with transferable skills and knowledge. This book is also intended for technicians, technologists and engineers new to Creo Parametric software.
This introductory book discusses how to plan and build useful, reliable, maintainable and cost efficient computer systems for automated engineering design. The book takes a user perspective and seeks to bridge the gap between texts on principles of computer science and the user manuals for commercial design automation software. The approach taken is top-down, following the path from definition of the design task and clarification of the relevant design knowledge to the development of an operational system well adapted for its purpose. This introductory text for the practicing engineer working in industry covers most vital aspects of planning such a system. Experiences from applications of automated design systems in practice are reviewed based on a large number of real, industrial cases. The principles behind the most popular methods in design automation are presented with sufficient rigour to give the user confidence in applying them on real industrial problems. This book is also suited for a half semester course at graduate level and has been complemented by suggestions for student assignments grown out of the lecture notes of two postgraduate courses given annually or biannually during the last ten years at the Product development program at the School of Engineering at Joenkoeping University.
This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.
This book presents the proceedings of the 8th Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT '16), incorporating the 11th Cambridge Workshop on Rehabilitation Robotics, held in Cambridge, England in March 2016. It presents novel and state-of-the-art research from an international group of leaders in the fields of universal access and assistive technology. It explores various issues including the reconciliation of usability, accessibility and inclusive design, the design of inclusive assistive and rehabilitation systems, measuring product demand and human capabilities, data mining and visualizing inclusion, legislation in inclusive design, and situational inclusive interfaces (automotive and aerospace). This book provides an invaluable resource to researchers, postgraduates, design practitioners, therapists and clinical practitioners, as well as design teachers.
Design your own original 2D patterns and use 3D prototyping to test your designs, achieve the perfect fit and make quick alterations. Pattern Cutting For Fashion with Lectra Modaris (R) will guide you from the basics of pattern modification through to 3D realisation, alteration and visual effects, as well as the completion of a finished production pattern. By viewing your garment in a virtual environment first, you will also be able to make design, colour, print and fabric decisions prior to toile making. Workshops include: A basic t-shirt; Dart modification; Darts into seams; Darts into Flare; Button wrap and facings; A Basic Jean; Pleats in a Skirt /Trouser with pocket; A shirt with two piece collar /yoke; Modelling on the half scale stand and converting pattern to full scale.
This volume constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2016, held in Tonsberg, Norway, in June 2016. The 17 revised full papers presented were carefully reviewed and selected from 115 submissions. The topics range from mathematical theory to industrial applications.
Learn physics, engineering, and geology concepts usually seen in high school and college in an easy, accessible style. This second volume addresses these topics for advanced science fair participants or those who just like reading about and understanding science. 3D Printed Science Project Volume 2 describes eight open-source 3D printable models, as well as creative activities using the resulting 3D printed pieces. The files are designed to print as easily as possible, and the authors give tips for printing them on open source printers. As 3D printers become more and more common and affordable, hobbyists, teachers, parents, and students stall out once they've printed some toys and a few household items. To get beyond this, most people benefit from a "starter set" of objects as a beginning point in their explorations, partially just to see what is possible. This book tells you the solid science stories that these models offer, and provides them in open-source repositories. What You Will Learn Create (and present the science behind) 3D printed models Review innovative ideas for tactile ways to learn concepts in engineering, geology and physics Learn what makes a models easy or hard to 3D print Who This Book Is For The technology- squeamish teacher and parents who want their kids to learn something from their 3D printer but don't know how, as well as high schoolers and undergraduates.
In dem Band wird die Vorgehensweise unter dem Finite-Elemente-Programm Pro/MECHANICA anhand von anschaulichen Beispielen erlautert. Leser lernen die wesentlichen Merkmale kennen: Aufbau des FEM-Modells, Analysen, Konvergenzmethoden, Ergebnisauswertung. Alle Aufgaben werden Schritt fur Schritt erklart und sind mit Screenshots illustriert. Die 2. Auflage ist mit Hinweisen zu den Verbesserungen in Pro/MECHANICA Wildfire 5.0 versehen, zusatzliche Tipps und Tricks sowie Referenzbeispiele machen die Arbeitsschritte noch leichter verstandlich.
This book constitutes the proceedings of the 13th International Symposium on Smart Graphics, SG 2015, held in Chengdu, China, in August 2015. The 17 full and 3 short papers presented in this volume were carefully reviewed and selected from 35 submissions. They are organized in topical sections named: graphics, sketching and visualization, automation and evaluation, image processing, and posters and demo session. |
You may like...
SolidWorks Simulation 2022 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,640
Discovery Miles 16 400
Advances in Engineering Design and…
Chenfeng Li, U. Chandrasekhar, …
Hardcover
R4,057
Discovery Miles 40 570
Up and Running with AutoCAD 2019 - 2D…
Elliot J. Gindis, Robert C. Kaebisch
Paperback
R1,831
Discovery Miles 18 310
Creo Parametric 9.0 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R2,149
Discovery Miles 21 490
Mastercam 2023 for SolidWorks Black Book…
Gaurav Verma, Matt Weber
Hardcover
R2,311
Discovery Miles 23 110
AutoCAD Electrical 2023 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,464
Discovery Miles 14 640
|